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ABSTRACT: 
A new method for temporal pattern matching of a time series is 
developed using pattern wavelets and genetic algorithms. The 
pattern wavelet is applied to the matching of an embedded time 
series. A problem-specific fitness factor is introduced in the new 
algorithm, which is useful to construct a fitness function of the 
feature space. A two-step process discovers the pattern wavelet that 
yields high fitness value. The best temporal pattern matches are 
found through a thresholding process. These matches are kept and 
the future time series data point is used in the genetic algorithm's 
fitness function. The algorithm has been successfully applied to the 
identification of statistically significant temporal patterns in 
financial time series data. 
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INTRODUCTION 

Data mining is the exploration of data with the goal of discovering hidden structure. 
In many real-world applications, it is important to study the change of temporal 
features of a non-stationary time series, and identify the ones that are representing 
the significance of time instances. For example, it is critical in stock market 
applications that the patterns relating to sudden stock price changes be identified. 
Generally such time series are considered non-stationary. Traditional time series 
analysis employs statistical methods to model and explain the data and predict future 
values of the time series. It is not easy, however, to identify the critical temporal 
patterns of the time series using these traditional methods. 
 Using a set of observations, in this paper, we present a new method for time 
series data mining. By introducing a pattern wavelet along with the use of a genetic 
algorithm (GA), temporal patterns can be effectively revealed in non-stationary time 
series. 
 The paper is organized as follows. After presenting the problem statement, 
traditional ARMA modeling is reviewed. The ideas of temporal pattern matching 



 

and the pattern wavelet are then discussed. Next, a detailed discussion of the new 
algorithm is provided. Finally, a presentation of the results and conclusions is given. 

PROBLEM STATEMENT 

Let Z = {zt, t = 1,…, N} be the non-stationary target time series, whose temporal 
features evolve over time. The task is to find an approach to characterize these 
changing temporal features.  
 Applying traditional time series modeling to this problem involves finding 
solutions to the Box-Jenkins difference equation (Bowerman and O'Connell 1993) . 
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where φp(B) is the nonseasonal autoregressive operator of order p, θq(B) is the 
nonseasonal moving average operator of order q, zt is the time series, at is a sequence 
of random variables, δ is a constant term, and B is the backshift operator. The Box-
Jenkins method is limited by the requirement of stationarity of the time series and 
normality and independence of the residuals. However, in most applications, these 
conditions are not met. One of the most severe drawbacks of this approach is the loss 
of the non-stationary characteristics we desire to identify. 
 Our method takes a new approach. Let 
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be the set of sub-time series of length Q embedded in Z, where Q ≤ N. Clearly, zt ⊆ 
Z, which may represent the changing temporal features or patterns of Z. We propose 
that by studying the embedding zt, the temporal features of Z may be identified.  
 The method for eliciting the temporal features from the embedding zt arises from 
a study of wavelets and the wavelet transform. The wavelet transform is a natural 
extension of Fourier's work done in the early 19th century. Where Fourier's 
transform can find frequency information with no time reference or time information 
with no frequency, the wavelet transform provides both time and frequency 
information. 
 Generally speaking, the wavelet transform matches a compactly supported 
function, called a wavelet, across both scale (frequency) and translation (time) 
(Polikar 1996). The Fourier transform matches an infinitely supported function 
across frequency (scale). Both use convolution of the basis function and the original 
time series. For the wavelet transform, it is provided for all scales. 
 Next we introduce the so called “pattern wavelet” and “pattern wavelet 
transform”. This transform is an extension of a discrete form of the wavelet 
transform applied specifically to identifying temporal features. 

PATTERN WAVELETS 

By relaxing the restrictions of the wavelet transform, the pattern wavelet transform is 
derived. Where the wavelet transform uses the convolution of the wavelet and the 



 

time series, the pattern wavelet transform uses a subset of the convolution of the 
pattern wavelet and the time series. Also, where the wavelet is required to have a 
zero mean, the pattern wavelet is not. These relaxations yield a transform that 
identifies the temporal features discussed in the problem statement. A detailed 
explanation of the algorithm follows. 
 Let f(p,δ,Z,g) be the pattern wavelet transform, where p ∈ P ⊆ ℜQ is the pattern 
wavelet, δ ∈ ℜ is a threshold parameter, and g = g(zt) is a measure of fitness of the 
temporal feature. We want to find the optimal solution to the following problem 
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The pattern wavelet transform f(p,δ,Z,g) is the fitness of pattern p with threshold δ 
applied to time series Z with fitness measure g. The following definitions are needed 
for f. 
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The vector zt ⊆ Z is the embedded series of length Q, where Q ≤ N. The pattern 
factors rt, t = 1,…, N-Q+1, are elements of the vector r ∈ ℜN-Q+1 which consists of 
N-Q+1 inner products of the pattern wavelet p and the embedded time series zt. Also 
µr denotes the mean of rt, σr is the standard deviation of rt, and M is the pattern 
match set, which is defined as the set of all time instances t where the pattern factor 
rt is greater than or equal to the threshold µr + δσr. Finally, the pattern wavelet 
transform f is defined as the mean of g(zt) for t ∈ M. 
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where c(M) is the cardinality of M. Also σM is the standard deviation of g(zt) at times 
t ∈ M. 
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It should be noted that the selection of fitness operator g in (2) is problem specific 
and is independent of the algorithm. It should be chosen a priori based on the types 
of hidden temporal features to be discovered. 



 

 Because the maximization problem in (1) is complex and nonlinear, it is difficult 
to solve using traditional numerical optimization methods. To overcome these 
limitations, a roulette wheel based GA with elitism (Goldberg 1989) searches for the 
optimal p and δ. Ideally p ∈ ℜQ and δ ∈ ℜ, for efficiency purposes p ∈ [-ε, ε]Q and 
δ ∈ [δ1, δ2]. These ranges are discrete due to the nature of the GA with a possible 2b 
unique values, where b is the number of bits used to represent pi and δ. The 
parameters for the GA are Q, Z, g, b, and the population size. The parameter b is 
usually in the range of 4 to 16 and the population size is set to 30. The most elite 
individual is maintained from generation to generation without change. No mutation 
is used. The GA is shown below. 
 

Pattern Finding Genetic Algorithm 
1. Create an elite population 

a) Randomly generate large population (10 times normal population size) 
b) Calculate fitness 
c) Select the top 10th of the population to continue 

2. While all fitness have not converged 
a) Perform roulette selection, save elite individual 
b) Crossover population 
C)Calculate fitness 

APPLICATION RESULTS 

The goal of this application is to find hidden temporal patterns in a certain stock 
time series. Our experimental time series is the daily open stock price of the 
Quantum (QNTM, traded on the NASDAQ) time series Z = {zt, t = 1,…, N} with 
N=3,761. See Figure 1 for illustration. Obviously, this time series is non-stationary. 
Our special interest is to identify the temporal pattern that is related to a significant 
price change. 

ARMA Model 
Two ARMA models of the time series reveal essentially the same random walk 
characteristics. The models are 
 

 

 
Figure 1- Quantum Corp stock time series 
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where �φ  = 0.99933 in (3) and �φ  = 0.045948 in (4). The �φ  in both models is 
statistically significant, but the autocorrelations of (3) show strong evidence of non-
stationarity and the Ljung-Box test of the residuals indicates a lack of independence. 
The model (4) Ljung-Box test of the residuals indicates independence. By seeing 
that the �φ  ≅ 1 in (3) and �φ  ≅ 0 in (4), both models become equivalent (5). 
 The ARMA models provide little insight into hidden structure in the time series; 
the series is a random walk. On the other hand the method presented by the authors 
finds statistically significant structure as presented below. 

Pattern Wavelet Model 
In building the pattern wavelet model, the fitness operator g in (2) is chosen as 
 

 ( )
( )

g z B B
B

zt

Q Q

Q t= −− − +

−

1

.  

 
In our case we want to find features that indicate a fit ∆% after the end of the pattern 
match. 
 We found c(M) to be between 138 and 314, depending on the support of the 
pattern wavelet. The statistics for eight patterns are given in Table 1. The change in 
the stock price after a pattern match was between +0.7% and +1.5%, whereas the 
average change was +0.12%. This shows that there is a correlation between the 
patterns and the price changes. The standard deviation, though, is between 3% and 
4% for the patterns and 3% for the average day. The µM of the matched patterns is 
between 5 to 12 higher than µg(Z) of the whole time series. Two statistical tests are 
used to show significance of the results. The first test is the runs test. The test 
hypothesis is H0: There is no difference between the matched time series and the 
remaining time series. HA: There is significant difference between the matched time 
series and the remaining time series. Our test uses a 1% probability of Type I error 
(α = 0.01). Table 1 shows that the null hypothesis can easily be rejected in all cases. 
 The second statistical test is the difference of two independent means. The two 
populations are the transformed series and the whole time series. Although the two 
populations are probably dependent, this can be ignored because it makes the 
statistics more conservative, i.e., it will tend to overestimate the Type I error. The 
test hypothesis is H0: µM - µg(Z) = 0, HA: µM - µg(Z) > 0. This test uses a 1% 
probability of Type I error (α = 0.01). Again, Table 1 shows that the null hypothesis 
can be very confidently rejected for all the patterns. The mean fitness of the time 
series  µg(Z) = 0.001179, and the σg(Z) = 0.032931. 
 



 

TABLE 1 – STATISTICAL SIGNIFICANCE OF RESULTS 

Q c(M)  µµµµM σσσσM Runs test αααα means test αααα 

1 238 0.00736 0.0385 < 1.00x10-17 8.81x10-3 
2 167 0.00834 0.0375 < 1.00x10-17 7.58x10-3 
3 357 0.00746 0.0336 < 1.00x10-17 3.64x10-4 
4 185 0.00913 0.0417 4.78x10-10 5.30x10-3 
19 201 0.01057 0.0416 < 1.00x10-17 8.28x10-4 
21 144 0.01397 0.0362 < 1.00x10-17 1.51x10-5 
27 190 0.01276 0.0406 4.44x10-16 5.55x10-5 
39 210 0.01113 0.0348 < 1.00x10-17 2.56x10-5 

CONCLUSIONS 

In this paper, a new method for temporal data mining is proposed. Using a pattern 
wavelet transform as a data mining tool has yielded meaningful results. Instead of 
forcing the wavelet to match everywhere, it matches only when there is a high 
similarity between the pattern wavelet and the underlying time series. To find such 
pattern wavelets, a genetic algorithm is used. Even with a complex, non-stationary 
time series like stock price, the algorithm detected interesting patterns. Across all 
tested Q the patterns found were statistically significant. 
 The algorithm is flexible in that by using an alternative g, fitness function, 
different structures can be found. The g used in this research was for positive 
changes, but just as easily 
 

 ( )
( )

g z B B
B

zt

Q Q

Q t= − −− − +

−

1

  

 
which would find negative changes. Also, a more complicated g could be used that 
could take into account the standard deviations of the matches. 
 Future research directions will include exploring combinations of patterns, 
looking for patterns in shorter segments of the time series, and adding additional 
factor dimensions such as volume. 
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