
1

IMPROVING GENETIC ALGORITHMS PERFORMANCE BY HASHING
FITNESS VALUES

RICHARD J. POVINELLI AND XIN FENG
Department of Electrical and Computer Engineering
Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
E-mail: Richard.Povinelli@marquette.edu
Ph: 414.288.7088
Fx: 414.288.5579

ABSTRACT:
This paper presents a method for improving genetic algorithm (GA)
performance. Typically, zero diversity in the population's fitness values signals
the stopping point for a GA. As the population evolves, diversity diminishes,
causing the same chromosomes to be frequently reevaluated. For real world
problems, the computational effort spent on evaluating the fitness function far
exceeds that of the genetic operators. By using a hash table to store the most
recently evaluated chromosomes, significant performance improvements are
realized. Several examples demonstrate the improvements.

Keywords: Genetic Algorithms, Hashing, Data Mining

 This paper develops a new way to improve GA performance. Profiling the
computation time of a GA reveals that most time is spent evaluating the fitness function.
A study of the convergence criteria and diversity characteristics of an evolving GA finds
fitness values are frequently recalculated. This suggests an opportunity for performance
improvement.
 The paper shows that efficiently storing fitness values in a hash table can
dramatically improve GA performance. Several examples demonstrate that the method
increases in value as the fitness function evaluation cost increases.

PROBLEM STATEMENT
 Although GAs are robust global optimizers (Goldberg 1989; Holland 1992), they are
slower to converge than gradient-based methods. Table 1 compares the optimization
performance of MATLAB’s fmin (1998, p.7-7) and GA code for three polynomials.

 10 5x + (1)
 2 10 10000x x− + + (2)
 3 2150 100x x x+ + + (3)

 Both fmin and the GA find the maximum for x between –128 and 127. The
benchmarks were performed with MATLAB 5.3 running under Windows NT 4.0 Service
Pack 5. The computation time was obtained with MATLAB’s profiling tool, which
reports a precision of .016s. Since fmin falls below the precision of the profiling tool, it
was run 100 times for each trial. The computation time was then recomputed for one
execution of fmin. Each data point in the table represents the mean of 100 trials.

2

 The hardware environment was a dual Pentium II 350MHz with 256MB 100MHz
SDRAM, 10.2GB ultra-IDE hard drive, and a 16MB AGP video card. Although the
hardware contains two processors, MATLAB was executed on only one processor.

Table 1 - Comparison of fmin and GA Performance

 fmin GA
Polynomial Time (s) Flops Optimum Time (s) Flops Optimum

1 0.023 1065 1,275 4.52 172,901 1,271
2 0.0060 249 10,025 4.60 142,621 10,022
3 0.024 1263 4,467,956 4.06 166,017 4,297,209

 As expected, fmin outperforms the GA both in computation time and in locating a
better solution. It is interesting to note how fmin performs much better on the quadratic
than on either the first or third degree polynomials. Of course GAs excel in other types of
search problems. They have the advantage when the search space is multi-dimensional
and contains many local minima. It would be beneficial to find a way to improve the
computational performance of a GA. Improved performance allows larger spaces to be
searched and more complex problems to be addressed.

ALGORITHM
Now that the goal has been outlined – to find a method to improve the performance of a
GA – the details of the implementation will be discussed. The GA provides optimization
for a time series data mining problem (Povinelli and Feng 1998). Time series data mining
discovers temporal patterns that are characteristic and predictive of events.

The GA is composed of the following steps:
1. Create an elite population.

a) Randomly generate large population (10 times normal population
size).

b) Calculate fitness.
c) Select the top one-tenth of the population to continue.

2. While all fitness have not converged
a) Perform roulette selection, save elite individual.
b) Crossover population.
c) Calculate fitness.

 The first step, a Monte Carlo search, improves the optimization performance for the
data mining problem. The second step is a binary GA with roulette selection, population
of 30, random locus crossover, and single individual elitism. The stopping criterion for the
GA is convergence of all fitness values.

PERFORMANCE EVALUATION
To find opportunities for performance improvement, the GA is profiled on the data
mining problem. Because of the stochastic nature of a GA, 100 trials are run. Table 2
summarizes the results.

3

Table 2 - GA Computation Profile

 Time (s) Calls
Routine Mean Std Mean Std

GA 57.03 17.42 1.0 0.0
 CalculateFitness 55.04 16.97 39.5 15.8
 RouletteSelection 0.92 0.31 38.5 15.8
 Crossover 0.30 0.12 37.5 15.8
 Other 0.76 0.04

 The profiling shows that more than 96% of the processing time is spent calculating
fitness values. A small fraction (2%) of the processor time is actually used to run the GA.
The Calls column of Table 2 shows the number of times each subroutine is called. This
means that, on average, it takes 38.5 generations for the algorithm to converge.

SOLUTION
The key to improving the performance of the GA is to reduce the time needed to calculate
the fitness. By examining the mechanisms of the GA, it can be seen that the diversity of
the population decreases as the algorithm runs. The fitness values for the same
chromosomes are repeatedly recalculated. If previously calculated fitness values can be
efficiently saved, computation time will drop significantly.
 The data mining problem used in this paper searches for temporal patterns in a time
series (Povinelli and Feng 1998). To find a temporal pattern of length two requires
chromosomes of length 18. This means that the search space contains 218 or 267,144
members. With this number of members, the fitness values could be stored in an array.
Although this is a manageable size, the problem quickly becomes unwieldy for a slightly
larger data mining problem. For example, a search for temporal patterns of length four
requires a chromosome of length 30. This yields a search space with more than one trillion
members. With current technology, it is not feasible to store a 1012 size array efficiently.
This leads us to consider alternative methods for storing the fitness values.
 The classic data structure for efficient storage and retrieval is the hash table. A
discussion of hashing can be found in (Manber 1989, pp.78-79). A brief description is
provided here.

The interface to a hash table provides three methods. The first is a create method
which takes as a parameter the size of the underlying data structure to be constructed.
The second is put, which takes two parameters – the key and an element. The put method
stores the element with the associated key. The last method is the get. It takes one
parameter, the key, and returns two values – a flag indicating if an element was found and
the element.
 Internally, the key-element pairs are stored in an array. The array is accessed through
a hash, which is based on the key. Table 3 shows how the data structure is formed.

4

Table 3 - Sample Hash Table Extract

Hash Key Element

100 1001001 32.5
101 null null
110 1100010 45.7

A hash is generated from the key. This method creates the hash from the first n bits of the
chromosome, where 2n is the size of the hash table.
 The put method has three cases. In the first case, the hash table does not contain the
key and the hash is not in use. A hash is generated from the key, and the key and element
are inserted into the table at the index given by the hash. In the second case, the key is not
stored in the hash table, but the hash is already used. This is a collision. A linear probe,
which linearly searches for an open location in the hash table to store the key and
element, resolves the collision. In the final case, both the key and the hash are already
stored in the table. Nothing is done.
 The get method has four cases. In the first case, the key and its corresponding hash
are not in the hash table. The method returns that the key cannot be found. In the second
case, the key is not stored in the hash table, but the hash is already used. The get method
uses a linear probe to discover that the key is not stored in the table. In the third case, the
key is associated with its hash. This is the most efficient storage, and the element is
quickly returned. In the final case, the key and the hash are in the hash table, but are not
associated with each other. This is a collision. The linear probe is used to find the
appropriate key and element.
 As collisions mount, the efficiency of the hash table degrades to that of a linear
search. When the cumulative number of collisions exceeds the size of the hash table, a
rehash is performed. Traditionally, a rehash involves two steps. The first step creates a
larger hash table – four times larger for this method. The second step copies the elements
from the smaller hash table to the larger – a computationally expensive process.
 This method does not include the second step. The diversity reduction argument
justifies the exclusion of the rehash copy step. Only the first step of creating a larger hash
table is done. The smaller hash table is simply thrown out. This seems counter-intuitive
because all of the known fitness values are lost. However, since the diversity decreases as
the GA runs, many of the eliminated key-element pairs will not be used and the most
frequently used chromosome values will be quickly recalculated. The hash table will fill
up again with the most used key-element values.

RESULTS
This section presents the results of applying the hash table to the GA. The first two
results are for polynomials. The last is the time series data mining problem.
 For the polynomial optimization, the random search step is removed. The first
experiment maximizes the first order polynomial,10 5x + . The second experiment
maximizes the second order polynomial, 2 10 10000x x− + + . Both use the range of 128−
to 127. Table 4 and Table 5 provide a comparison of the timing profiles for the versions
with and without hashing. Each data point is the summary of 100 trials.

5

 The difference of two independent means statistical test is used. The test hypothesis
is:

H0: µno hash - µwith hash = 0

HA: µno hash - µwith hash ≠ 0

This test uses a 1% probability of Type I error (α = 0.01), which means when α is less
than 0.01 H0 is rejected.

Table 4 – First Order Polynomial Computation Time Profile (s)

 No Hash With Hash
Routine µ σ µ σ α

GA 4.52 1.76 5.05 1.96 4.4 x 10-2
 CalculateFitness 2.39 0.93 2.85 1.10 1.4 x 10-3
 RouletteSelection 1.40 0.56 1.44 0.60 6.3 x 10-1
 Crossover 0.55 0.23 0.58 0.24 3.6 x 10-1
 Other 0.18 0.10 0.18 0.05 1.0 x 10-0

Table 5 – Second Order Polynomial Computation Time Profile (s)

 No Hash With Hash
Routine µ σ µ σ α

GA 4.60 1.79 5.24 1.63 8.2 x 10-3
 CalculateFitness 2.30 0.91 2.91 0.86 1.1 x 10-6
 RouletteSelection 1.53 0.61 1.55 0.54 8.1 x 10-1
 Crossover 0.59 0.24 0.60 0.22 7.6 x 10-1
 Other 0.18 0.05 0.19 0.05 1.6 x 10-1

 For both experiments, the computation time for CalculateFitness is statistically
different between the hashing and no hashing versions of the GA. For the second order
polynomial, the overall computation time also is statistically different. Hashing has a
negative effect on the performance of the GA. The problems are simple and the cost of
calculating the fitness is not overwhelming (~50%). Hashing adds no value.
 For both experiments, the number of calls to the various routines and the mean
optimum are not statistically different between the hashing and no hashing versions of the
GA. The introduction of the hashing does not change the GA optimizing characteristics.
 The first two experiments suggest that hashing provides no improvement for GA
computational performance. For simple problems this is true. But for a simple problem
another optimization method, such as MATLAB’s fmin, would be used. To generalize the
impact of incorporating hashing into a GA to more complex problems, the ones at which
GAs excel, would be a mistake. The next experiment demonstrates this.
 The final experiment is the data mining problem described in (Povinelli and Feng
1998). Table 6 compares the timing profiles. Each data point is the summary of 100 trials.

6

Table 6 – Data Mining Computation Time Profile (s)

 No Hash With Hash
Routine µ σ µ σ α

GA 52.68 21.55 22.48 3.81 2.6 x 10-43
 CalculateFitness 51.37 21.00 21.10 2.76 3.3 x 10-46
 RouletteSelection 0.86 0.38 0.90 0.80 6.5 x 10-1
 Crossover 0.26 0.16 0.26 0.30 1.0 x 10-0
 Other 0.19 0.04 0.22 0.05 2.8 x 10-6

 With the data mining experiment, the computation time for all the routines but the
RouletteSelection and Crossover are statistically different between the hashing and no-
hashing versions of the GA. Here the cost of calculating the fitness is overwhelming
(98%). Hashing adds significant value. The computational effort is reduced 57% using
hashing. Additionally, the relative computational variation also is reduced by 59%
 The number of calls to the various routines cannot be seen as statistically different.
The mean optimum for the no-hash version was 0.0410 with a standard deviation of
0.00419 and the mean optimum for the hash version was 0.0415 with a standard deviation
of 0.00408. The α equals 0.30, meaning that H0 cannot be rejected. This shows again that
the optimizing character of the GA was not changed by the introduction of the hashing.
 This experiment shows the true benefit of hashing. With a complex search problem
the computational effort is reduced by over 50%.

CONCLUSION
Changes in a GA’s population diversity provide an opportunity for improving its
computational performance. Taking advantage of this insight requires an efficient means
for storing fitness values. A hash table provides this means. The application of hashing to
a GA can improve performance by over 50% and the performance variation is
significantly reduced. This method works for complex real-world problems – the ones
especially suited to GAs. Care must be taken in extrapolating GA results from simple
problems to ones that are more complex.

REFERENCES
(1998). Using Matlab: Version 5, The MathWorks, Inc., Natick, MA.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning,
Addison-Wesley, Reading, MA.

Holland, J. H. (1992). Adaptation in natural and artificial systems : an introductory analysis
with applications to biology, control, and artificial intelligence, MIT Press, Cambridge,
MA.

Manber, U. (1989). Introduction t o Algorithms: A Creative Approach, Addison-Wesley,
Reading, MA.

Povinelli, R. J., and Feng, X. “Temporal Pattern Identification of Time Series Data using
Pattern Wavelets and Genetic Algorithms.” Artificial Neural Networks in Engineering,
St. Louis, MO, 691-696.

