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Abstract 

Baseline wandering interference misleads ECG anno-

tators from accurate identification of the ECG features. 

Previous work that deals with baseline wandering re-

moval requires the identification of the QRS complex or 

other ECG features prior to baseline removal. This paper 

proposes an adaptive Kalman filter for the real time re-

moval of baseline wandering using a polynomial ap-

proximation independent of the signal characteristics. A 

state space model is used with an adaptive Kalman filter 

to estimate the state variables, including the baseline 

wandering approximation from the previous values of the 

original ECG signal. This approach is applied to the 

(PTB) Diagnostic ECG Database and to a ECG signal 

disturbed by white noise and a second order baseline 

wandering. The results show accurate and improved 

baseline wandering estimation and removal as compared 

to moving averaging and cubic spline techniques. 

 

1. Introduction 

Baseline wandering is one of the noise artifacts that af-

fect ECG signals. This wandering, caused by the subject’s 

movement or breathing, might induce misleading meas-

urement and annotation of the signal’s features. Usually, 

the baseline wandering is expected to have the same fre-

quency content as the T-wave. However, due to certain 

tests such as the stress test, the baseline wandering may 

vary unpredictably. This work presents a Kalman filter 

based approach for the online estimation and removal of 

baseline wandering in ECG signals.  

Most of the previous adaptive techniques that deal with 

baseline wandering make the assumption that the extremi-

ties of the features of the signal are known. The first is the 

adaptive technique proposed by Jane et al. that applies a 

combination of a Least Mean Squares (LMS) driven 

adaptive impulse correlated filter and a two stage cascade 

filter for the removal of baseline wandering. This tech-

nique requires the detection of the QRS complex and the 

frequency analysis of the signal in order to determine the 

transfer function of the cascade filter  [1]. Additionally, 

Daqrouq et al. have proposed a baseline wandering reduc-

tion technique that requires the decomposition and recon-

struction of the signal after the signal is filtered  [2]. 

Therefore, these techniques require certain knowledge 

(RR interval) of the patient prior to applying the filtering 

technique. Lisheng et al. used a combination of Meyer 

wavelet filter and spline interpolation for the removal of 

the baseline wandering  [3]. 

Additional well known techniques include the window 

moving averaging method  [4] and the cubic spline tech-

nique  [3]. Since these methods can be applied without the 

knowledge of the heart rate of the signal, these techniques 

will be used for validating the proposed adaptive Kalman 

filter approach. 

The technique proposed in this work is an application 

of the Kalman filter for the prediction and removal of the 

baseline wandering in ECG signals. The proposed ap-

proach is based on the hypothesis that the ECG signal can 

be characterized by an autoregressive model, while the 

baseline wandering is estimated as a first order polyno-

mial. The State Space model is integrated with the Kal-

man filter in order to estimate state variables, which in 

this case are the coefficients of the autoregressive model 

and the coefficients of the baseline wandering estimated 

curve. The proposed approach suggests an accurate way 

for the estimation of the baseline of an ECG signal, and is 

compared to the Cubic Spline Method (CSM) and the 

Moving Averaging (MVG) technique.  

2. Datasets 

The proposed approach is applied to two data sets. The 

first dataset is the PTB Diagnostic ECG database  [5]. 

This database is taken from Physiobank. This dataset was 

collected by Physikalisch-Technische Bundesanstalt 

(PTB), the National Metrology Institute of Germany.  

The database consists of 549 records taken from 294 

subjects. Each record contains measurements taken from 

15 leads, where the first 12 leads are the conventional 

leads and the last 3 are the Frank leads (X, Y, and Z). The 

data is digitized at 1000 samples per second.  

The second dataset is simulated data with additional 
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baseline wandering. Since there is no quantitative meas-

urement of baseline wandering, the use of simulated data 

can be used to measure the error between the original 

signal (before applying baseline wandering) and the sig-

nal after applying the baseline wandering removal tech-

niques.  

The simulated ECG signal is generated using a piece-

wise linear function, where the features of the signals are 

represented by triangles. The signal is then smoothed us-

ing a third order Savitzky-Golay FIR filter of frame size 

of 17 samples, and is repeated 150 times.  

The baseline wandering is represented as a second or-

der polynomial dependent on the discrete sample time. 

The simulated baseline wandering is added to the original 

signal. 

3.  Method 

The proposed approach is used to identify and remove 

the baseline wandering in ECG signals without adding 

any distortion to the signal. The Kalman filter approach is 

chosen because of its ability to simultaneously model 

both the ECG signal and the baseline wandering. 

3.1.  State space model 

The ECG signal without the baseline wandering is 

assumed in this work as an autoregressive model such as: 
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where k is time sample of the signal. Therefore, the signal 

with the baseline wandering is 
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With the assumption of stationarity the general form of 

the update equations can be written as follows: 
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k is an n-dimensional vector, Yk is the scalar val-

ued measurement.  

Using the proposed model in equation (3), and replacing 

X with the set of coefficients, a ,and with 
k

C
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 the update equations ( 4) and (5) are written as follows: 
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where In is the n-dimensional identity matrix. 

3.2. Kalman filter solution 

The solution for the State Space model presented in (6) 

and (7) is determined using an iterative approach. The 

solution is presented in terms of equations (4) and (5) as 

follows  [6]: 
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Where K is the Kalman gain, k is the discrete time sam-

ple, P is the uncertainty covariance matrix and 0 1g> 2  

is added to model measurement noise. 

The mean convergence time for the KF approach was 

4.4 ms for the original setup. The convergence time is the 

time needed by the KF approach in order to accurately 

predict and remove the baseline wandering. However, the 

equations shown in (8) are iterated over the input signal, 

y. During the iteration process, equation (8) is updated for 

the first 2 iterations as follows to accelerate the conver-

gence of the Kalman filter. 
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The initial condition of X is chosen as a zero vector, 

while that of the error covariance vector is chosen to be 

50*In+2. 
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4.  Validation techniques 

4.1.  Window moving averaging (MVG) 

The Window Moving Averaging technique is used to 

smooth the input curve. The method averages over a win-

dow of data as follows 

1
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where x is an element in the dataset and n is the num-

ber of elements in the window 

4.2.  Cubic spline method (CSM) 

This method uses a cubic spline estimation of the base-

line from the PR segments solely. In this work, the base-

line wandering was determined using a cubic spline inter-

polation over a window in order to determine the baseline 

wandering of ECG signal as suggested by  [3]. 

5. Results 

These techniques are applied to PTB Diagnostic ECG 

database and simulation data. The reason for using simu-

lated data is to be able to determine precisely the error in 

each of the methods, because both the original and the 

baseline wandering are known. The validation of the 

Kalman Filter approach with respect to the window mov-

ing averaging and the spline technique for the PTB Diag-

nostic ECG database is qualitative, while that for the 

simulated data is quantitative. 

5.1.  PTB Diagnostic ECG Database 

The approach was applied to a sample record taken 

from the PTB database. The comparison between the 

three methods is shown in Figure 1. This signal is taken 

from the lead I of record ID s0027lre of the sixth patient. 

The simulation was applied with the same window size of 

70 samples to all three methods. 
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Figure 1 Comparison of the different techniques. 
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Figure 2 Comparison of the distortion in the signals. 

 

 Figure 2 shows that the KF approach aligned the ECG 

signal successfully and managed to keep the signal with-

out any distortion for the same window size. Although the 

other approaches, MVG and Spline, were able to remove 

the baseline wandering, an additional artifact was added 

to the signal, as shown in the S-wave for the MVG and 

some of the QRS complex for the Spline approach.   

5.2.  Simulated data 

The simulated ECG signal provides a quantitative 

comparison amongst the techniques. The simulate signal 

for a single beat is shown in  
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Figure 3 Simulated ECG signal for one beat. 

 

The KF approach is applied to the simulated data over 

150 beats. The window size for the KF approach is the 

same as for the real patient data (70 samples). The win-

dow size for the MVG and the CSM was chosen to be 90 

samples. This was done to improve the performance of 

the MVG and the CSM. The result from applying the KF, 

MVG, and CSM techniques is shown in Figure 4.  

As it can be seen from the results, all three techniques 

successfully remove the baseline wandering in the modi-

fied ECG signal. These resulting signals are compared to 
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the original signal to study the distortion resulting of each 

of the techniques. 
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Figure 4 Comparison between the three techniques.  

 

The mean and standard deviation of the error resulting 

from the difference between the original signal and the 

signal generated from each of the techniques are shown in 

Table 1. It is to be noted that the comparison is performed 

after the convergence of the KF. 

 

Algorithm Mean 

Error 

Error STD 

Kalman Filter 0.073 0.076 

Moving Avering 0.215 1.858 

Cubic Spline 1.010 3.666 
Table 1 Comparison between baseline removal techniques. 

 

As can be seen from the table above, the level of dis-

tortion is minimal for the KF approach. This is because 

the MVG and the CSM techniques are highly dependant 

on the window size and the heart rate of the patient. 

However, the KF approach can be applied to different 

signal as shown previously, for the same window size.  

6. Discussion and conclusions 

This paper presented a method used in real time base-

line removal. However, this was adjusted as mentioned in 

Eq. (9) by using exponential weighting on the state vari-

ables update equations of the SS model. The reason for 

this weighting is to accelerate the convergence of the 

Kalman Filter. As shown in the results, the KF approach 

had minimal distortion, specially in the ST segment, 

when compared to the other techniques. The KF approach 

for the removal of baseline wandering failed for the con-

dition under high frequency changes. This is due to the 

adaptability and convergence factor of the KF. This prob-

lem can be fixed by increasing the window size for the 

time samples; however, this is not favorable due to the 

increase in the computational time during estimation.  

In conclusion, although the Kalman filter approach did 

not accommodate for quick baseline changes, this ap-

proach was successful in the online estimation and re-

moval of the baseline wandering for real-patient and a 

simulated test signal.  
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