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Abstract 

With an increasing focus on automatic diagnoses of 

cardiac disease through ECG signals, de-noising tech-

niques that do not introduce artifacts have become neces-

sary. This paper proposes a model based approach for 

removing high frequency noise from ECG signals. The 

proposed modeling technique is based on the propagation 

of the electric waves over the cardiac tissue. The pro-

posed approach models the crucial nodes as a difference 

between two sigmoid functions. The ECG signal is mod-

eled as the sum of the activity at the SA node, AV node, 

Bundle branches, Purkenji fibers, and right and left ven-

tricles. The model is adapted to the targeted ECG signal 

using a nonlinear least squares optimization technique. 

The proposed filtering approach is applied to randomly 

selected ECGs from the Long-Term ST database. A quan-

titative analysis is performed on simulated ECG signals 

perturbed with white noise with ST signal to noise ratios 

ranging from -25 to 5 dB. 

1. Introduction 

The cardiac muscle is both electrically and mechani-

cally active with the electrical system acting as a stimula-

tor for the mechanical. Measurement through electrocar-

diogram (ECG) signals of the electrical activity of the 

heart provides important information for diagnosing car-

diac disease. However, ECG signals are typically dis-

turbed by noise from electric interference, electromyog-

raphy, and baseline wandering. The filtering method pre-

sented in this paper focuses on removing electric interfer-

ence and electromyography contamination from ECG 

signals.  

Our approach models the generation of the ECG signal 

and uses this model based approach to filter high fre-

quency noise from the ECG signal. The modeling ap-

proach is based on cardiac electrophysiology, where the 

ECG signal is generated from the modeling of the SA 

node, AV node, Bundle branches, Purkinje fibers, and left 

and right ventricles walls. The electrical activity of each 

of these components of the heart is estimated by the dif-

ference of two sigmoid functions. The model has the abil-

ity to characterize the P wave, PR segment changes, QRS 

complex, ST segment changes, and T wave. Therefore, 

diagnostic information contained in these components of 

the ECG signal is not lost by the filtering process. 

2. Background 

The simplest way to remove high frequency noise from 

an ECG signal is with a low pass filter. However, such 

filters introduce artifacts and/or temporal effects in the 

signal by removing the Q or S waves or by adding varia-

tions to the T wave end [1]. Additionally, current adaptive 

filtering methods that deal with high frequency signal de-

noising require a reference signal or a template model as 

an input [2].  

Recently, Kestler applied a discrete wavelet transform 

and Wiener filter in order to suppress the high frequency 

noise in ECG signals [3]. Su et al. used a Translation- 

Invariant Wavelet De-Noising Method with Improved 

thresholding to de-noise ECG signals [4]. The drawback 

of these methods is that the right parameters for the wave-

let decomposition are required to avoid adding temporal 

effects to the ECG signals or removing the Q-wave or S 

wave. 

 He et al. proposed the use of independent component 

analysis (ICA) for filtering ECG signals. He’s approach 

used 12 ECG leads as inputs to ICA to extract the noise 

from the 12 lead signals [5]. The drawback of this ap-

proach is that all 12 signals are required, which might not 

be available in ambulatory recordings. 

Clifford et al. used a Gaussian based approach to char-

acterize the ECG signal [2]. However, this approach does 

not model ST and PR changes; thus some of the informa-

tion is lost when filter ECGs that indicate ischemia or 

infarction. 

3. Data sets 

The proposed approach is applied to real and simulated 

ECG signals. The real signals are taken randomly from 

the Long-Term ST database . The LTST database consists 

of 86 long term (21 to 24 hour) ECG recordings sampled 

at 250Hz. The simulated signals are generated by the dy-

namical model developed by McSharrey and Clifford [6]. 

Several signal-to-noise ratios (SNR) of white, brown, and 

pink noise are added to the clean simulated signals to 
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establish a quantitative evaluation of the proposed filter-

ing approach. 

4. Methods 

The motivation for this modeling approach starts from 

the observation of the electric potential of a cardiac cell 

and specific groups of cells during the cardiac cycle. 

While substantial research has been done on the internal 

dynamics of the cardiac cell, we focus our model, for 

complexity and computational reasons, on characterizing 

the SA node, the AV node, bundle branches, Purkinje 

fibers, and left and right ventricles. 

We have found the cardiac electrical cycle of these 

groups of cardiac cells is well modeled by the difference 

of two sigmoids. Figure 1 illustrates the output of an ex-

ample model of a group of cardiac cells. 
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Figure 1: Proposed heart cell activity 

 

While other mathematical structures such as polyno-

mials may be used, there is a distinct advantage to the 

proposed difference of two sigmoids. Only five parame-

ters are needed to model each cell group and these pa-

rameters correspond well to physiological characteristics 

of the heart and also to fiduciary points on the ECG. 

These parameters are the magnitude, inflection points, 

and slopes of the difference of two sigmoids. They corre-

spond, respectively, to the magnitude of electrical activ-

ity, the inflection points of depolarization and repolariza-

tion, and the rate of potential change within the cell 

group. 

By summing the potential difference of each cell 

group’s electrical activity at the positive and negative 

terminals of each lead, the ECG signals are generated.  

The following sections will present how the ECG wave 

features are generated. The features are the P wave, the 

PR segment, the Q wave, the R wave, and the S wave 

(QRS complex), ST segment, and T wave. 

4.1. Mathematical description 

As discussed above our cardiac model is composed of 

models of six key electrical components of the heart. 

Each component is modeled as the difference of two sig-

moids.  
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where k represent the translation of the wave in the direc-

tion of the y-axis, a1 and a2 control the rising slope, and c1 

and c2 control the translation in the direction of the x-axis.  

The ECG signal is the sum of the potential activity of 

each cell group as measured at a lead. The signal meas-

ured at a lead is modeled as the difference between the 

signal arriving at the positive and negative electrodes of a 

lead. The resulting equation that estimates the ECG signal 

is: 
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i
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represent the cell group activity at the 

positive and negative electrodes for the SA node, AV 

node, bundle branches, Purkinje fibers, and left and right 

ventricles. ˆ
ECG

f
 
is the generated ECG signal. 

In order to apply the proposed ECG model, the pa-

rameters of (2) are determined for a noisy ECG signal, 

such that sum squared error between the noisy ECG sig-

nal and the signal generated by the model are minimized: 

 ( )
2

ˆ
ECG

signal

Error ECG f= −∑ .  (3) 

The error is minimized using a partially separable 

nonlinear least squares method. Since the proposed model 

is based on cardiac electrophysiology, the ECG signal is 

separated into atrial and ventricular activity. The atrial 

activity is divided into the P wave and PR segment mod-

eled by the SA and AV nodes respectively. Therefore, the 

residual function of these features is: 
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Similarly, the ventricular activity is divided into the Q 

wave, the R wave, the S wave, the ST segment and the T 

wave; which are represented in this case by the bundle 

branches, Purkinje fibers and left and right ventricles: 
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The estimated clean ECG signal is the sum of the atrial 

and ventricular activity. The usage of the partially separa-

ble property enables us to lower the number of parameters 

to be estimated from 54 to 18 and 36 respectively; thus 

reducing computational time. The partially separable 

method takes into consideration the difference between 

the iso-electric line at the atrial and ventricular activity. 
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4.2. Preprocessing and initial condition 

Since the approach is applied to a single beat at a time, 

the beats are determined automatically using 

ECGPUWAVE [7]. The beginning and end of the atrial 

and ventricular activity are also generated from the 

ECGPUWAVE method. 

In order to have an accurate match between the mod-

eled and original ECG signal, a template matching initial 

condition is performed. Additionally, a dynamic template 

is generated for each beat. This choice of the template 

depends on the sign of the R peak. This allows greater 

accuracy during the nonlinear optimization process. The 

highest cross-correlation point between the initial tem-

plate and the noisy ECG signal is chosen.  

4.3.  Parameter estimation 

The parameter estimation of the proposed model in (4) 

and (5) is accomplished with the least squares method 

lsqcurvefit, provided by Matlab [8]. The constraint that 

the atrial activity occurs prior to that of the ventricular 

activity is enforced by a partially separable method; since 

the parameter estimation of the atrial activity is performed 

separately from the ventricular activity. Additionally, the 

slopes and magnitudes of difference between two sigmoid 

functions are bounded greater than zero.  

5. Results 

The proposed approach is applied to the de-noising of 

ECG signals. The approach is applied to random signals 

from the LT-ST database, however, the drawback in ap-

plying the method to real signals is that there is no quanti-

tave measure of its accuracy; thus, this approach is ap-

plied to simulated signals with white, brown and pink 

noises added to the signal.  

5.1. Application of LT-ST database 

The modelling approach is applied to ischemic beats 

randomly selected from the LT-ST dataset. Figure 2 show 

the estimated clean signal for an ischemic beat. Figure 3 

shows the error from the original signals versus the clean 

ones, it can be seen that the error is clinically negligible 

(<4%) [2] compared to the original signal. This error is 

considered as the noise in the signal. This case study 

shows the ability of the proposed approach to model ST 

segments, which are a clinically important feature in 

ischemia detection. We can see that the modelling ap-

proach is able to model the ST change as shown in Figure 

2. Further analysis of the error between the original and 

the clean signal is presented in the simulated case study.  
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Figure 2: Original healthy and estimated clean signal 
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Figure 3: Percentage error between the original and clean 

signal 

5.2. Simulated signals 

The simulated signals are generated from the model 

developed in [6]. Additionally, white, brown, and pink 

noise are added to the signal at an SNR level ranging 

from -25 to 5 dB measured at the ST segment [9]. The 

process is repeated for 40 trials, and the average mean, 

standard deviation of the error, and T wave end variation 

is measured. Figure 4 represents the noisy signal at -25db 

white noise. Additionally, Figure 5 shows the original 

signal overlapped by the estimated clean signal. It can be 

see than there is an excellent fit between the two. Table 1 

shows the average mean, standard deviation error be-

tween the original and estimated signal, and T wave end 

variation. It can be seen that the mean error between the 

estimated clean signal and the original signal is less than 

1%, which is clinically negligible. Additionally, the stan-

dard deviation of 7% is less than 10%, which is also neg-

ligible in clinical trials.  

111



 

 

0 0.2 0.4 0.6 0.8 1 1.2
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)

E
C

G

 
Figure 4 Simulated noisy signal at -25dB at ST segment 
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Figure 5 Orignal signal overlapped by clean signal 

 

Noise Type Error % 

-25dB to 5dB 

Twave Var. % 

White noise 0.45% ± 0.48% 

to 0.11% ± 2.8% 

2.4% ± 1.4% 

Pink Noise 0.1% ± 0.57% to 

0.54% ± 7.6% 

2.86% ± 1.26% 

Brown Noise 0.11% ± 0.53% 

to 0.67% ± 4.6% 

1.83% ± 1.03% 

Table 1: Error comparison between original and clean 

signal 

6. Discussion 

This article presented a model based approach for the 

removal of high frequency noise. The model is based on 

the cardiac electrophysiological activity. The proposed 

approach takes into consideration the ECG waves and 

segment variations with minimal error. Thus, the resulting 

signal can be used in diagnosis of heart disease without 

losing clinical information from the original signal.  

The drawback behind this approach is that it is applied 

to a beat by beat process; this can be extended by per-

forming the optimization process on multiple beats at-

tached end-to-end with the real signal.  

A cardiac electrophysiological model is presented in 

this paper for the de-noising of ECG signals. The advan-

tage in addition to the minimal error compared to the 

clean signal, this approach has the ability to maintain 

clinical information that helps in heart disease diagnostics 

such as the ST segment by modeling the late potential 

that causes the changes in the ST segment.  
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