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Abstract---The aim of this paper is to present a multisensory 
system that studies abnormal walking patterns to prevent a fall. 
Due to the growing elderly population,   scientific research on 
smartphone-based gait detection systems has recently become an 
imperative component in decreasing elderly injuries due to falls. 
To address the issue of smart gait detection, we propose a gait 
classification system using smartshoe sensor data in this paper. 
We used shoe-worn pressure sensors on the foot and validated 
algorithms to extract the gait parameters during walking trials in 
a lab environment. This smartshoe contains four pressure sensors 
with a Wi-Fi communication module to unobtrusively collect data. 
To the best of our knowledge, this is the first system which can 
automatically detect abnormalities in walking patterns. A unique 
signal classification approach is presented by recognizing the 
abnormality in a subject’s gait, and modeling the dynamics of a 
system as they are captured in a reconstructed phase space. Based 
on our experiments, we have found an 89% walking-based 
classification accuracy to help prevent falls.  

Keywords---Smart gait, Falls, Smartshoe, Smartphone, 
reconstructed phase spaces (RPS), Gaussian mixture models 
(GMM). 

I. INTRODUCTION 

Gait analysis is an important human locomotion study to 
recognize normal or pathological patterns of walking. 
Gathering the results from gait analysis has proved useful in 
medical programs, fall prediction in the elderly [15], physical 
therapy [23], and sports training [24]. For instance, with 
detailed gait feature analysis, therapists can quantify the 
rehabilitation progress of the patients after surgery, and the 
corresponding treatment and training can be customized 
according to an individual's status [25]. One can predict a fall 
by looking at the abnormality in individual’s status.  

Accidental falls have a plethora of social and economic 
impacts and dramatic health consequences among the elderly. 
In 2010 alone, 2.3 million nonfatal fall injuries were treated in 
emergency departments, and approximately 21,700 of those 
culminated in death, with direct medical costs totaling $30 
billion [26]. For people 70-75 years old, the estimated 
incidence of falls is over 30% per year [1]. Most falls happen 
during the activities of daily living that involve a small loss of 
balance, such as standing or walking. Gait analysis can be used 
for a comprehensive study of falling in old age [6]. Falls are 
considered to be a major source of morbidity and mortality in 
older adults and impose huge costs to the healthcare systems 
[7]. Therefore, the classical foot trajectory descriptors such as 

stride length, stride velocity, and temporal parameters have 
been extensively investigated to determine the fall-related fact. 

However, to address the lack of empirical gait evidence 
regarding the aforementioned factors, and due to the                   
recent developments in mobile technology, we explore low 
cost smartshoe empirical data collection. Since mobile phones 
are highly portable, smartphone-based gait detection systems 
have the potential to function almost everywhere [15, 16]. With 
the recent development in mobile technology, the smartphone-
based gait detection systems have become more popular as 
their computational abilities have increased.  Ideally, integrated 
sensors along with the pressure sensor shoes (smartshoe) can 
automatically analyze gait. Therefore, we focus on smart gait 
detection for preventing fall injuries and assessing gait in 
general. To address these issues, we propose a smartphone-
based gait detection system that can alert the user to their 
abnormal walking patterns.  

In order to do so, we use the signal classification technique 
to identify abnormal gaits using the sensor data. Almost all 
work in signal classification or identification is based on linear 
systems analysis, using features based on a frequency domain 
representation. Signal detection and signal classification in the 
field of activity recognition and communications has been 
studied based on a statistical decision theory [12]. Alternatives 
to these established approaches include nonlinear classifiers 
such as neural networks or support vector machines, as well as 
clustering and likeness quantity techniques from the relatively 
new field of time series data mining [13].  

Moreover, many existing time-domain approaches to the 
task of signal classification are based on a fairly simple 
underlying pattern, or template, which is either known or can 
be learned from the data. In the case of real signals with 
complex underlying systems, such as walking, running, or 
climbing stairs, patterns rarely exist. Frequency-based 
techniques are reliant on the existence of spectral patterns, 
which from a random processes perspective capture only the 
first and second order characteristics of the system. Yet, little 
work has been done in directly modeling signals in the 
reconstructed phase space, which is the approach introduced 
here for classifying time series. A statistical learner is applied 
to the space, and the resulting maximum likelihood classifier 
approach. 

Finally, previous research has not studied gait monitoring 
using only smartshoe sensors data. Our system is useful for fall 
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prevention not only among the elderly, but also in gait 
disorders identification among children, physical rehabilitation 
patients, environmental monitoring, human behavior analysis, 
and social networking research. 

A. Major Contributions 

     We propose to use smartphones as the platform for 
developing a smart gait detection system, as they naturally 
combine detection and communication components. We 
conducted experiments on 15 different users (with different 
ages, heights, and genders) wearing a smartshoe and carrying 
a smartphone, and found that our system can identify 
abnormality in users’ gait patterns. Our major contributions in 
this paper are as follows:  
�� Developed a smartphone-based gait detection system for 

analysis of human locomotion patterns. 
� Used pressure distribution data from the smartshoe in the 

first system to identify abnormal gait pattern in users. 
� Developed a Wi-Fi network for the communication between 

the smartphone and smartshoe. 
� Proposed a new signal classification technique to identify 

any abnormality in users’ gait patterns.  

The rest of the paper is organized as follows: in the next 
section, we discuss relevant related work and differentiate the 
difference between our system and the existing ones. Then we 
discuss the details of the system. This section is followed by 
the evaluation of our iPhone-based prototype system. Finally, 
we conclude the paper with some research that predicts the 
direction of gait analysis.   

II. RELATED WORK 

In past research, many scientists have discussed mobility 
and privacy issues [5], but they did not discuss wearing a 
sensor. Most of them focus on gait detection techniques, but 
not prevention of the fall. 15 Moreover, other researchers do 
not account for the cost effectiveness of the system as well. 
Early machine-based gait recognition research typically 
utilized a combination of visual techniques or radar systems 
[18, 19]. An inherent advantage of vision-based technology is 
that it captures the gait of the person from a distance when other 
types of biometrics (e.g. fingerprints) are not accessible. 
Currently, the performance of the vision based biometrics is 
lower than stronger biometrics (e.g. fingerprints) [19]. In a 
multi-biometric system, vision-based gait recognition is 
combined with other biometrics, (e.g., face recognition) [20] or 
shoe pressure sensors [21] to improve performance. Finally, 
another approach relies on the use of radar [22].  A continuous 
wave radar measures the Doppler shift of the signal bouncing 
off of people while walking. Since radar is less sensitive to the 
color and texture of the individual’s clothing and the ambient 
light condition, it is more readily detected by a mobile device. 
Both vision and radar based solutions require deploying 
external sensors in the infrastructure, rendering them 
unsuitable for user authentication of gait. 

Majumder et al. [15] developed i-Prevention, a smartphone 
based fall prevention system that can alert the users about their 

abnormal walking patterns. The authors validated their 
approach using a decision tree with cross validation and found 
99.8 % accuracy in gait abnormality detection for only 
smartphone sensors data. They also developed the 
smartPrediction system [16] which equips a smartshoe with 
smartphone sensors to analyze the data using the same 
technique to show the fall prediction accuracy. Verghese et al., 
introduced three domains in their study to characterize gait 
performance in elderly persons [2]; The “Rhythm” domain is 
best represented by cadence, swing time and stance time. The 
“Pace” domain is best represented by gait speed and stride 
length. Finally, the “Variability” domain is best represented by 
stride length variability. Additionally, researchers have studied 
how to promote the walking speed as a general indicator that 
reflects functional and physiological changes in the health state 
and helps to predict falls [3, 4].   

   Furthermore, Pappas et al. [7] used a pattern recognition 
algorithm to define the changes during the gait cycle using their 
device comprising of three force-sensitive resistors (FSR) 
located on an insole (one under the heel, and two at the first 
and fourth metatarsal heads) and a gyroscope. The system was 
tested on two subjects with incomplete spinal injuries and was 
used to trigger functional electrical stimulation (FES), with 
demonstrated benefit for both subjects. In [8], the author 
proposes a method that uses a network of fixed motes to 
provide location information about the victim after a fall has 
been detected. 

TABLE I. COMPARISON OF EXISTING WORK BASED ON 
DIFFERENT FEATURES 

Approach 
Cyber 

Physical 
System 

Interoperable 

Support 
High 

Sampling 
Rate 

Minimize 
Integration 

effort 

Cost 
Effective 

Bamberg 
[37] Yes Yes No No No 

Zhang [36] Yes Yes Yes Yes No 

Lee [35] Yes Yes No No No 

Erez  [34] Yes Yes No Yes No 
 B-
Shoe  [33] No No No Yes No 

Lane [32] Yes Yes No Yes No 
Mellone 
[31] No No No Yes No 

Sposaro 
[30] No No No Yes No 

Jiangpeng 
[29] No No No Yes No 

Pedro [28] No No No Yes No 

Jiang [27] No No No Yes Yes 
Popescu 
[38] No No Yes Yes No 

Bourke 
[39] Yes No No Yes No 

Alwan [5] No No Yes Yes No 
Our 
Approach Yes Yes Yes Yes Yes 

       Similarly, iFall [7] is an Android application that has been 
developed as a falls detection system. Data from the 
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accelerometer is assessed using several threshold-based 
algorithms and position data to detect a fall. The fall detection 
algorithm requires significant threshold adjustment without 
any guarantee of its performance. It therefore, requires extra 
processing.  The PerFallD [9] is also a pervasive fall detection 
system tailored for mobile phones with two different detection 
algorithms based on the mobile phone platforms. It implements 
a prototype system on the Android G1 only. 

       To address the drawbacks of the above-mentioned 
systems, in this paper, we propose a smartphone-based gait 
detection system using shoe-worn sensors. Our system has 
been designed to directly address some of the drawbacks of the 
existing systems and yields good prediction results. It is highly 
secure, and is inexpensive because it requires only a 
smartphone with low cost smartshoes. Our system also 
supports high sampling rates during data collections, 
interoperable with minimum integration complexity.  The most 
important aspect of our system is the warning that allows the 
user to prevent fall before it actually happens. Again we believe 
that our system is the first smartphone-based gait detection 
system, which can prevent a fall by automatically detecting 
abnormal gait patterns. We illustrate the difference between 
our system and the other related works in table I. 

III. ARCHITECTURE OF THE SYSTEM 

     The strength of our proposed architecture is relying on 
existing wireless communication to provide a low price with 
maximum freedom of movement to users in their physical 
activity. In addition, we have used small, light-weight devices 
that are user friendly, like the smartphone and the smartshoe. 
This overall architecture was developed by assessing iterative 
designs of the prototypes with 15 subjects in the laboratory 
environment. To integrate the regulated sensors we used output 
of both the smartshoe and the smartphone and performed an 
extensive set of experiments to evaluate and distinguish 
between normal and abnormal walking patterns. Subjects wore 
the smartshoe like any other regular walking shoes and carried 
their smartphone in their pocket or held it in their hand. In the 
system, the smartshoe collected foot pressure value while the 
subject was asked to perform three different types of simulated 
walking patterns: normal, stiff leg or peg leg, and leg length 
discrepancy. After receiving the data through Wi-Fi 
communication, the smartphone processed it to classify 
whether the user’s gait pattern is normal or abnormal. We have 
implemented the quantative gait analysis in the iOS platforms. 
However, our system is also compatible with the Android 
platform.  

A. Design Overview 

    This section provides an overview of the system’s work 
flow. We briefly describe each architectural component and in 
turn, present a high-level overview of how they work in unison. 
In reality, the gait detection system waits until it gets a 
substantial amount of walking data, extracts features, and 
compares it to the particular user. The architecture of the 

system is shown in figure 1. Our proposed analysis technique 
for gait detection comprises the following key components:  

Preprocessing. In this stage, smartshoe data is segmented 
into frames. A frame is the unit for feature extraction and 
classification. Not all frames are considered for processing.  

Feature Extraction. A set of features are extracted from 
the projected frame for walking detection. For efficiency, this 
set of features is lightweight yet still provides enough 
information for normal and abnormal walking classification. 
More relevant features are extracted for gait analysis. These 
features are more computationally intensive and will be used 
for gait classifications.  

Walking Detector. Gait analysis is only meaningful during 
walking. This stage distinguishes the walking data from other 
activities. A decision tree classifier is applied using feature sets 
computed by feature extraction. We are analyzing only the 
walking signals for gait abnormality detection. 

 
Figure 1. The Gait Detection system with its components: (1) Smartshoe-

worn sensors, (2) Rehabilitation module, (3) Abnormality in gait detection, 
(4) Decision, and (5) Feedback. 

Gait Analysis. We use a reconstructed phase space (RPS) 
and a Gaussian Mixture Model (GMM) framework [24] for gait 
detection. The design objective is to differentiate between 
signals generated by three different walking patterns, and to 
adapt the gait model so that it could account for different 
walking patterns and the variance in the user’s gait over time.  

B. Physical Implementation 

 Using all of the electronics (including the sensors located 
at the bottom of the shoe), a Wi-Fi module for the wireless 
transmission, and a power supply, we were able to engineer a 
smartshoe.  

TABLE II. INSOLE SENSING POSITION 

Position Number Name 
1 Posterior Metatarsal 
2 Heel (Hind foot ) 
3 Great Ball (Forefoot) 
4 Little Ball (Forefoot) 

The smartshoe system is comprised of an amplifier circuit, 
Wi-Fi module, and a power supply unit with four insole 
pressure sensors. Each shoe module consisted of an 
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instrumented insole placed beneath the foot and an attachment 
that mounted to the back of the shoe. A sample insole of the 
smartshoe and the enclosed sensors and hardware are detailed 
in figure 2. Our goal is to optimize the number of measurement 
points.  Most of the body pressure is measured from the rear 
foot and the fore foot. Considering these issues we have placed 
two of our sensors in the fore foot region and two of them in 
the rear foot region as shown in figure 3(b). The four sensors 
insole locations are listed in table II. 

In order to process smartshoe sensors data, the 
communication module has two different software tasks. One 
is for the arduino and another is for the iPhone. The arduino is 
programmed to read analog signals from the shoe sensors and 
to create a data packet that converts the signal into digital form. 
Subsequently, arduino sends those packets to the phone with a 
response to the data sending request. It also manages the Wi-Fi 
communication coordinating with the WiFly shield.  In the 
iPhone we developed an application that communicates with a 
WiFly shield and collects the sensor data by a polling request. 
Then, the data is saved and analyzed through a parsing packet 
and calculates real pressure values from the sensors. From here 
we identify the threshold value of the individual subject. 

 

Figure 2. Early prototype of smartshoe hardware mounted on shoe  

IV. OVERVIEW OF OUR APPROACH 

 We use the following approaches of signal classification to 
analyze the smartshoe sensors data to identify any abnormality 
in gait patterns.   

A. Phase Space Reconstruction 

The basis of this approach is that, given access to the state 
structure of a system, a classification of such systems can be 
developed. We start by presenting a theoretical construct of the 
problem. Given a finite-dimensional system state space M and 
φ: M→M, the dynamics of the system, a system is described by 
the pair < φ, M>. We then define a set ɸ of all possible 
dynamics on M with a topology ζ. Without loss of generality, 

we assume M to be d-dimensional, because given any�/ ϲ �, 
M can be replaced by �/ U M. The system classification then 
becomes one of partitioning ɸ according to the requirements of 
the classification problem with a particular dynamics φ 
identified with a particular partition Pi such that ɸ = U Pi, where 
Pi ∩ Pj= θ, i≠ j .The problem for real world systems is how to 
gain access to and represent φ for a particular system. The 
approach used here is phase space reconstruction, also known 
as phase space embedding, and was first proposed in [14].  

The works of Takens [9] and Sauer et al. [10] are used as a 
theoretical basis for our signal classification process. This work 
states that a time series of observations sampled from a single 
state variable of a system can be used to reconstruct a space 
topologically equivalent to the original system.  

Given a time series � = ��,    � = 1 … … . �, a sequence of 
state variable observations, a trajectory matrix X of dimension 
d and time lag ζ is defined as, 

X = 

⎣
⎢
⎢
⎡X��(
��)�
X��(
��)�......

�� ⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡ x��(
��)�     … . .   x���  ….  ��x��(
��)�     … . .   x���  ….  ��.                  .                     

.                     .                   
.                        .               

x�     … . .   x��(
��)�  ….  ���(���)�⎦
⎥
⎥
⎥
⎥
⎤
  (1)               

Where, each row vector in the matrix represents a single 
point in the space;  

         �� =  x��(
��)�      … . .       x���      x�                     (2)                   

Where, � = (1 + (� − 1)!) … … … �.  a row vector �� is a 
point in the RPS. 

The dimension d is greater than twice the box counting 
dimension of the original system which is a sufficient condition 
for topological equivalence [14]. Most real systems do not have 
a known d, but it may be estimated using the false nearest-
neighbor technique [11], which calculates the percentage of 
neighboring points which are near because of projection rather 
than dynamics. In Takens’ original work, ζ=1. However, in 
practice, it has been found that the appropriate selection of the 
time lag can reduce the required RPS dimension. A common 
empirical for determining time lag is to use the first minimum 
of the automutual information function [11]. 

The proposed classification algorithm is theoretically 
capable of differentiating between signals generated by 
topologically different systems because of the representational 
capability of RPSs. It can differentiate between deterministic 
nonlinear signals with identical linear characteristics but 
different nonlinearities. This theoretical capability is 
demonstrated empirically across different complex real-world 
application domains. 

B. Gaussian Mixture Models 

The second step of the approach is to learn a GMM 
probability distribution for each walking pattern. This is done 
by creating an RPS using the time lag and dimension and 
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inserting all the signals for a particular class into this space as 
described by (1) above. 

A GMM is defined as: 

"(�) =   # $% &' (*)

-

%0�
= # $% 2(�; μ%, ∑%) 

-

%0�
        (3) 

where M is the number of mixtures, 2(�; μ%, ∑%) is a 
normal distribution with mean  μ% and covariance matrix∑%, 
and 5% is the mixture weight with the constraint that ∑5% =
1. The required number of mixtures is related to the underlying 
distribution of the RPS density. The classification accuracy 
tends toward an asymptote as the number of mixtures increases 
provided there is sufficient training data. This iterative method 
yields a Maximum Likelihood (ML) estimate, via the 
estimation formulas: 

μ%
/ =  ∑ 6'(*7) *789��

∑ 6'(*7)89:�
, 

 

                    ∑%< =  ∑ 6'(*9)(*9� >')8(*9� >')89:�
∑ 6'(*7)89:�

,      (4)         
 

5%
/ =  ∑ 6'(*7) 89��

∑ ∑ 6'(*7) ?'��89:�
, 

Which are then substituted into (3). These signal 
classification approaches are useful for our system as they have 
the ability to distinguish the transition in walking patterns over 
a short period of time and allow us to evaluate gait abnormality.  

V. EVALUATION 

To evaluate our proposed system, we have developed a 
prototype application and investigated its performance with 
extensive experiments. In this section, we first introduce how 
the data was collected. Then we present how the data was 
analyzed and the performance measured. 

A.  Data Collection Procedure 

We have developed a prototype application of the system 
for iPhone. The screenshots of the prototype application are 
shown in figure 4. In figure 4(a), the interface is shown which 
is used to collect the smartshoe data for a period of time. We 
have also developed the interface for user alert which is shown 
is figure 4(b). However, we are still working on the background 
process of alert generation mechanism. We have used our 
prototype application for data collection and for evaluating our 
system.  

We collected data for a normal walking pattern and two 
different abnormal walking patterns in different environments 
for a total of 15 samples per person. Each sample was 18 
seconds long.  We simulated the abnormal walking patterns 
that are caused by two physical abnormalities common in most 
elderly people- stiff leg and leg length discrepancy. These 
abnormalities lead to a huge number of falls every year. We 
simulated the “leg length discrepancy” situation by taking one 
shoe off (at the right leg) and wearing an extra heel on top of 

the regular heel on the left shoe. We simulated the “stiff leg” 
situation by walking with a straightened left knee.  

Smartshoe gathers pressure values from the foot through 
sensors in order to identify impaired balance. Foot pressure is 
also an indicator of body balance. It is necessary to identify 
abnormal walking patterns due to gait impairment in order to 
predict the risk of injury.  

For the smartshoe data collection process we used arduino, 
Wifly shield, and an amplifier circuit as the Wi-Fi 
communication module on the shoe shown in figure 3(a). This 
module would amplify the signal and convert it into a digital 
signal. The pressure data from the shoe are transferred to the 
smartphone through a my_adhoc Wi-Fi communication 
network. Pressure data was collected for the people over a 
period of time and each subject was tested with standing and 
three different walking patterns.  

 

 
Figure 3. (a) Components of a wireless shoe ; (b) Sensors attachment to the 

shoe with anatomical locations; (c) Illustration of the orientation of the 
smartshoe relative to the global frame of the measurement; (d) An example of 

the walking trial in the lobby. 

We first used this dataset for the training of our system. 
Later, we will use the trained system with real people to verify 
the gait abnormality detection accuracy. Since we cannot test 
potential fall injuries with real elderly people, we recruited 15 
students to participate, ages from 20 to 35 years old. Twelve of 
them were 170-180 cm, two were 158-169 cm tall, and one was 
less than 150 cm tall. Two persons weighed less than 60 kg, 
eleven weighed 61–90 kg, and two were more than 100kg.  

The data collected from the shoe showed which sensor we 
were getting maximum pressure from during the experiments 
with respect to subject’s sex/age, height and weight. For 
example, when subject one was performing his assigned task 
we observed that sensor 2 in both shoes was getting more 
pressure than the other. Figure 5 shows the variation of 
maximum pressure for different subjects while walking.  We 
used this maximum pressure value while determining the 
threshold for each subject in his or her walking pattern. Figure 
6 is the histogram of maximum pressure sensor count for 15 

737



 

test subjects. We observed that sensor 2 Heel (Hind foot) having 
maximum pressure for 7 different subjects while walking.    

(a) Smartshoe sensors data 
collection interface  

(b) Audio alert message 
generation based on abnormal gait  

Figure 4.  Screenshots of wireless smart gait collector prototype 

To evaluate the effectiveness of the proposed method in 
recognition, we choose four kinds of basic movements: which 
are standing still, walking with no abnormality, walking with 
leg length discrepancy, and walking with stiff leg discrepancy. 

 
Figure 5. Maximum Pressure variation of different subjects’ walking 

Raw data on foot pressure distributions for each moving 
pattern were acquired with the developed foot pressure sensing 
shoes. The sample variation of foot pressure for each kind of 
movement is displayed in figure 7. Pressure value represents 
the output value of analog information into which voltage is 
converted. Though there is a spike in standing data, it is still 
easily distinguishable from the walking signal. The 
measurement allows the data to be integrated to a standard 
clinical assessment of a person's postural stability and/or risk 
of injury. The measurements may include any other test that 
measures pressure using the pressure sensor value.   

It is important to differentiate if the user is walking on a flat 
surface or on a surface with considerable vertical variation. 
Using our system, we will also assess the effects of balance 
abnormality on human walking patterns and the variability of 
the extracted features. 
B.  Result Analysis  

In this section, we will first discuss the performance of the 
system. We built the reconstructed phase space model for 
normal and two different abnormal walking patterns.  Finally, 
we analyzed the patterns to show the differences in normal 
walking versus abnormal patterns to predict injury.  

We collected data for a normal walking pattern and two 
different abnormal walking patterns in a lab-environment. We 
also collected standing data using the smartshoe and compared 
them with the walking pressure data.  It was observed that the 
pressure distribution was different from one subject to another 
as the walking pattern was different in each subject. 

 
Figure 6: Histogram of Maximum Pressure Variation for 15 Subjects. 
We can easily distinguish between normal and abnormal 

waking patterns by analyzing the collected pressure data. Using 
the Weka machine learning toolkit, a powerful data mining 
toolkit [17]. We performed a 10-fold cross-validation in which 
we folded the data by session in order to avoid over-fitting (i.e., 
training and testing sets would never contain examples from 
the same subject). We ran our 3-class classifier per user and 
averaged the results to obtain an overall accuracy of 89%. The 
confusion matrix for this classification is shown in table III. 
Also, our system can avoid new training by training a universal 
model with data from all the subjects and to test new users gait 
without new training.  

TABLE III. CONFUSION MATRIX OF WALKING BASED 
CLASSIFICATION 

 Normal Stiff leg Leg length 

A
ct

ua
l C

la
ss

 

Normal 92.1 4.2 3.7 

Stiff leg 6.2 88.3 5.6 

Leg length 3.8 9.6 86.7 

Predicted Class 
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(a) Stationary 

 
(c) Walking with stiff leg incongruity 

 
(b) Unaffected Walking 

 
(d) Walking with leg length incongruity

Figure 7. Foot pressure distribution of: (a) stationary (b) unaffected walking (c) walking with leg length discrepancy (d) walking with stiff leg discrepancy 

As discussed above, our approach to signal 
classification is to build GMMs of signal trajectory densities 
in an RPS and differentiate between signals. This is done in 
three steps. The first step, data analysis, includes embedding 
the signals and estimating the time lag and dimension of the 
RPS. The second step is learning the GMMs for each signal 
class. The final step is signal classification, which is done 
with a maximum likelihood estimator (MLE) technique. 

Using the data set from the maximum pressure 
sensors, we plotted the RPS 3-D phase plot for three different 
walking patterns. We found different patterns for each 
different walking as shown in figure 8.   

We applied our technique to three data sets, the first data 
set is generated from normal walking, and second and third 
data sets are from two simulated abnormal walking patterns.   
It was observed that we were getting maximum pressure with 
one or two sensors during assessment with respect to the 
subject’s sex, age, height and weight. 

We used this maximum pressure value while determining 
the threshold for each subject in his or her walking pattern. 
We can also see the variations of different walking patterns 
for different subjects.  

 
Figure 8. Reconstructed 3-D phase space of Normal, and simulated 

walking with Stiff leg and Leg length discrepancy for maximum foot 
pressure value when ζ = 11 

Then, we modeled the dynamics using Gaussian mixture 
models (GMM). First, learning the GMM for each type of 
embedded time series and then testing the mix function of 
GMM on embedded time series to get the GMM. The 
particular models used here are statistical distributions that 
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can be learned over RPSs and then used to classify unseen 
signals. Nonparametric distributions based on three different 
walking and the distributions based on Gaussian mixture 
model distributions are also illustrated. A visualization of a 
GMM is shown in figure 9, where the principle axes of the 
ellipses indicate the one standard deviation of each mixture 
in the model. 

 
(a) Unaffected Walking 

 
(b) Leglength Inconguity 

(c) Stiff leg Inconguity 

Figure 9.  GMM-based gait classification modeling for three different 
walking patterns (2 Mixtures): (a) Walking without abnormality, (b) 

Walking with simulated leg length discrepancy, and (c) Walking with 
simulated stiff leg 

Our experimental results do not show the desired 
accuracy with the GMM for walking, as our analysis is for 
simulated data. However, for GMM, there is still room for 
classification accuracy improvement to greater satisfaction. 
We expect our accuracy to improve when data is collected 
from a real subject with a chronic gait problem. 

VI. CONCLUSION 

In this paper, we presented a wireless system to analyze 
gait using smartshoe-worn sensors through a real-time 
detection of abnormality in users’ gait patterns. The results 
from three different data sets are also presented to show that 
this approach provides a high rate of classification 
correctness in distinguishing between normal and abnormal 
walking patterns.  The system may also find broad 
applications in abnormal gait behavior detection for people 
with various disabilities who are at a high risk of injury.  

To test the temporal stability and long-term feasibility of 
our approach in the future, we hope to test our system with 
data from elderly people who suffer from chronic gait 
problems. We plan to have the smartphone contact a 
caregiver and a loved one in the event of a high risk injury 
situation so that they can take appropriate action. We also 
plan to measure the walking speed of the user. Additionally, 
the shoe could potentially also help us in identifying the 
specific causes for gait abnormalities. 
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