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Abstract 

 
The Time Series Data Mining framework developed by Povinelli is extended to 

perform weekly multiple time-step prediction and adapted to perform weekly stock 

selection from a broader market. The stock selections are combined into weekly 

portfolios, and techniques from Modern Portfolio Theory and the Capital Asset Pricing 

Model are adapted to optimize the portfolios. The contribution of this work is the 

combination of stock selection and portfolio optimization to develop a temporal data 

mining based stock trading strategy. Results show that investors can increase overall 

wealth, obtain optimal weekly portfolios that maximize return for a given level of 

portfolio risk, overcome trading costs associated with trading on a weekly basis, and 

outperform the market over a given time range.  
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Chapter 1 Introduction 
 
1.1 Motivation 

The financial markets are perennially attractive to researchers from a wide range of 

fields [1, 2]. This attraction is due to the lure of easy money, if only a method to perfectly 

predict the dynamics of the market could be discovered. From a more scientific stance, 

the financial markets are interesting because of their incredible complexity and time 

varying dynamics. The interests of millions of investors are represented through the rise 

and fall of stocks prices and the companies they represent. 

The dynamics of the stock market have been modeled in many ways. Box and Jenkins 

showed that the ARIMA model was a good first approximation [3, 4]. This model can be 

understood as a random walk process. Further financial research has produced more 

robust versions of the random walk model including the efficient market hypothesis [5]. 

All of these models of the market assume that all information is represented in the market 

immediately and that any attempt to profit through arbitrage will fail, because the stocks 

are correctly valued. 

However, despite this theory, there is a never-ending attempt by technicians to model 

the stock market dynamics to achieve superior returns [6, 7]. Examples of statistical 

trading strategies include chart analysis, momentum or swing trading, and trend trading 

[1, 6-8]. Each of theses strategies attempts to outperform market benchmarks by 

providing above market returns without significantly increasing risk. 

Recently, stock market research has become more attractive because of the increased 

access to financial data and the ability to invest independently. Websites such as 

http://finance.yahoo.com, http://esignal.com, and http://moneycentral.msn.com give 

http://moneycentral.msn.com/


Chapter 1 Introduction 2 

investors access to current and reliable financial information along with overall market 

conditions for investing. Online trading sites such as TDWaterhouse.com, Etrade.com, 

and Ameritrade.com, have allowed small investors to easily set up and manage their own 

investments. This combination of reliable financial data access and easy online trading is 

important in developing and testing an investment strategy. 

The work presented in this thesis is in the nature of a technical approach. We 

attempt to identify hidden patterns in the market data that are predictive of increases in a 

stock price. The unique nature of this work is the combination of dynamical systems 

theory with portfolio optimization techniques and the study of this approach across 

different prediction horizons and market conditions [9]. 

1.2 Problem Statement 

The goal of this research is to create a profitable trading strategy that overcomes 

transaction cost and outperforms the overall market returns. The proposed trading 

strategy combines stock selection, asset allocation, and risk management techniques. 

Stock selection is the process of identifying assets that have desired characteristics, and 

asset allocation is the process of weighting individual assets to build a portfolio. Risk 

management is the process of identifying and minimizing the impact of uncertain events. 

Asset allocation and risk management can be used to reduce risk by diversifying a 

portfolio. Portfolio optimization is the integration of asset allocation and risk 

management to create portfolios that meet specific risk and return criteria. 

In this research, stock selection is accomplished using a nonlinear time series 

prediction approach [3]. The approach seeks to discover hidden structures in 

reconstructed phase spaces of the stock price time series to make predictions on future 



Chapter 1 Introduction 3 

stock price movements. The details of reconstructed phase spaces and the data mining 

approach for stock selection are found in Chapter 2. 

Once stock selection is completed, optimal portfolios are constructed using 

techniques based on Modern Portfolio Theory and the Capital Asset Pricing Model [2, 7]. 

Modern Portfolio Theory, developed by Harry Markowitz, makes the assumption that 

investors differ only in their expectations of return required for a particular investment 

and risk tolerance. Modern Portfolio Theory provides the techniques to create a set of 

portfolios that are optimal in the sense that they maximize portfolio return for a given 

level of portfolio risk [2, 5, 9]. The Capital Asset Model extends Modern Portfolio 

Theory by determining a method for selecting a specific optimal portfolio from a set of 

optimal portfolios.  

This research contributes a trading strategy that employs a temporal data mining 

approach to stock selection combined with portfolio optimization. The trading strategy 

trades periodic weekly portfolios, by buying the entire portfolio at the beginning of the 

period and selling it at the end of the period.  

1.3 Thesis Outline 

This thesis consists of five chapters. Chapter 2 reviews the Time Series Data 

Mining Method (TSDM), the stock selection approach used here, and traditional portfolio 

optimization techniques. Chapter 3 describes the problem-specific methods used in stock 

selection and portfolio optimization. It also presents the extensions and adaptations of the 

TSDM method along with the adapted portfolio optimization techniques used to develop 

the proposed trading strategy.  Chapter 4 evaluates the proposed methods on historical 

data. This chapter details the stock market data sets, performance calculations, and 
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experimental results. Chapter 5 discusses the research results, conclusions, and 

suggestions for future directions. 
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Chapter 2 Background 

The Time Series Data Mining (TSDM) framework transforms market time series 

into reconstructed phase spaces (RPSs) and searches these phase spaces for temporal 

structures predictive of the greatest changes in the market time series [3]. This framework 

combined with portfolio optimization, which involves modifying the weights of the assets 

in a portfolio to achieve a specific investor goal or set of goals, is used to formulate a 

portfolio trading strategy. The portfolio optimization techniques used here are based on 

Modern Portfolio Theory (MPT) and the Capital Asset Pricing Model (CAPM) [1, 5]. 

The chapter presents an overview of the components used in developing the proposed 

trading strategy. 

2.1 Temporal Data Mining Overview  

A time series is an ordered sequence of real-valued elements denoted by 

     ,  1,..., ,nx x n N= =      (2.1) 

where n is the current time index, and N is the number of observations. Time series 

appear in many forms in a variety of fields. Domains such as medicine, speech, and 

finance have applications that involve the study of temporal data [10-14]. This thesis 

applies temporal data mining techniques in the area of financial time series prediction. 

Temporal data mining is a sub-field of data mining that focuses primarily on 

discovering relationships between sequences of real valued time series events. 

Techniques common to data mining and temporal data mining are association rule 

learning, classification, clustering, and prediction [15-18]. The main difference between 

temporal data mining and data mining in general is in how the data is represented. Often 

time series signals are noisy, non-linear, and chaotic, making patterns and data 
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relationships hard to detect [19]. Linear and nonlinear time series transforms such as 

linear filters and time series embedding techniques are used to modify the representation 

of time series data without losing valuable information about the time series. Specific 

time series transformation techniques such as the Discrete Fourier Transform, which 

transforms a signal from the time domain into the frequency domain, and the Discrete 

Wavelet Transform, which translates a time series into the time-frequency domain, have 

been used to represent data in formats suitable for data mining tasks [20].  

The TSDM approach has its foundation in temporal data mining using techniques 

from machine learning, artificial intelligence, and genetic algorithms. The approach uses 

a time-delay embedding technique called phase space reconstruction that creates a time-

lagged version of the original signal [3, 10]. The next section presents the concept and 

theoretical definition of a reconstructed phase space. 

2.2 Reconstructed Phase Space 

 This section discusses the definition of a reconstructed phase space and the 

theoretical justification for using the technique in this thesis. The reconstructed phase 

space is a time-delay embedding of an original time series and has been shown to capture 

nonlinear information found in complex dynamical systems that have many dimensions 

[3, 10, 21]. This technique creates a time-lagged version of a signal used to discover 

hidden patterns normally not detected in a linear space. This approach provides the basis 

for the data mining-based stock selection process presented later in this thesis.  

A reconstructed phase space (RPS) is a d-dimensional metric space in which a 

time series is unfolded. Takens proved that if the dimension of the embedding space is 

large enough, then the RPS is topologically equivalent to the original state space that 
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generated the time series [20, 22, 23]. The RPS can be formed using a time delay 

embedding process, which performs a homeomorphic mapping from one topological 

space to another. The embedding process creates the RPS signal, which is a time-delayed 

version of the original time series signal [19, 20, 23]. It maps a set of d time series 

observations taken from a time series x on to 

( ) ( )( )1 1 1n n nn dx x x n dττ τ−− −
 = = + x " …N− ,   (2.2) 

which is a vector or point in the phase space. Together the phase space points form a 

trajectory matrix 

( )

( )

( )

( )

( ) ( )( )

1 1 1 11 1

2 2 2 12 1

1 1

,

dd

dd

N d NN dN N d d

x x x

x x x

x x x

τ ττ

τ ττ

ττ τ

+ + −+ −

+ + −+ −

−− − − − ×

  
  
  = =   
  
     

x

x
X

x

"

"

# %#
"

  (2.3) 

where d is the embedding dimension, τ is the time-lag, and nx  is the signal value at time 

index n. Figure 2.2 shows an example of a RPS (a plot of the trajectory matrix) from a 

randomly generated time series shown in Figure 2.1. The original time series is time-

delay embedded with a dimension of two to create the RPS. Equation 2.4 shows the first 

five points in the trajectory matrix from Figure 2.2. 

1 6
6 9
9 3
3 8
8 1

 
 
 
 =
 
 
  

X      (2.4) 

Takens proved that if an embedding of a time series is performed correctly, then 

the dynamics of the RPS are topologically equivalent to the original state space and the 

RPS contains the same topological information as the original state space of system [21]. 
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Therefore, characterizations and predictions based on the RPS are considered valid and 

similar to those made if the original state space were available. 
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Figure 2.1 Example Time Series 
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Figure 2.2 Example Reconstructed Phase Space 
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2.3 Genetic Algorithm 

The Time Series Data mining method uses a simple genetic algorithm as an 

optimization method to discover predictive hidden patterns, with high fitness values, in 

the reconstructed phase space. A genetic algorithm is a method of problem solving and 

global optimization that uses computational models of evolutionary processes as elements 

in design and implementation [24]. Genetic algorithms incorporate aspects of natural 

selection to maintain a population of structures that evolves according to rules of 

selection, recombination, mutation, and survival of the fittest. The fitness or performance 

of each individual in the population determines which individuals are more likely to be 

selected for reproduction, while recombination and mutation modify those individuals, 

yielding potentially superior ones. This process leads to fitter populations corresponding 

to better solutions to various problems. Genetic algorithms have been shown useful in 

finding optimal solutions in non-linear functions [24].  

The main concepts of a binary genetic algorithm are fitness, objective function, 

chromosome, population, and generation [24]. A chromosome is a binary encoding of the 

independent variables of the objective function. The fitness of a chromosome is the 

application of the objective function to a decoded chromosome. A population is a set of 

chromosomes. A generation is one iteration of the genetic algorithm, which is comprised 

of the application of a set of operators to the population. The most frequently used 

operators in genetic algorithms are selection, crossover, mutation, and reinsertion [24].  

An objective function defines a rule for the search space where the optimizer is to 

be found. A simple example of an objective function might be: 

2( ) 100f x x x= + + .     (2.5) 
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An example of a small population for a particular generation is shown in Table 

2.1 with associated fitness values and chromosome lengths of eight.  

Chromosome x f(x), fitness 
00000000 0 100 

01111111 127 16356 

11111100 -4 112 

Table 2.1 Chromosome Example 

The first operator in a iteration of a genetic algorithm is typically selection. It is 

the process of choosing chromosomes from a population based on each chromosome’s 

fitness. The type of selection used in this work is roulette wheel selection in which a 

chromosome is given a section of the roulette wheel based on the size of its fitness value. 

The wheel is spun once, and the winning chromosome is selected for further 

permutations. 

The next typical operator is crossover, which is the process of combining 

chromosomes in a manner similar to sexual reproduction. The crossover operator 

combines segments from the encoded format of each parent to create offspring 

chromosomes shown in Figure 2.3. Crossover can be accomplished using either a fixed or 

a random crossover locus. 
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crossover locus    crossover locus 

1head 1tail

2head 2tail

1head
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2head

 

 

 

crossover locus 

 

 

 

1head

2head

2tail

1tail

Figure 2.3 Chromosome Crossover 

An example of the crossover process is again showed in Table 2.2 with example 

chromosomes. 

Mating pair Parent 1 Parent 2 Offspring 1 Offspring 2 
1 1111↑1100 0000↑0000 0000↑1100 1111↑0000 

2 0000↑0000 1010↑1111 0000↑1111 1010↑0000 

Table 2.2 Crossover Process Example 

The mutation operator randomly changes the bits of the chromosomes as shown in 

Table 2.3. The mutation operator is usually set at a specific mutation rate is used to 

control an aspect of population evolution and periodically randomize the population to 

avoid local minimums and maximums.  

Pre-mutation Post-mutation 
00001111 00011111 

01010011 01011011 

Table 2.3 Mutation Example 

Reinsertion is the process of selecting only a small percentage of chromosomes to 

bypass the operations of selection, crossover, and mutation. This technique allows the 
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individuals with the highest fitness to pass directly to the next generation without being 

modified and ensures that elite individuals are not lost due to the stochastic nature of 

selection and crossover. A genetic algorithm uses these steps, shown in Figure 2.4, to find 

objective function optimizers. 
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Figure 2.4 Genetic Algorithm Process
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• Random population initialization 

• Calculate fitness 

• While fitness value have not converged 

o Selection 

o Crossover 

o Mutation 

o Reinsertion 

2.4 Time Series Data Mining 

Time Series Data Mining employs a time-delay embedding process that embeds a 

time series into a reconstructed phase space (RPS), shown in Figures 2.1 and 2.2. The 

RPS, discussed in Section 2.2, is topologically equivalent to the original system that 

generated the time series [22, 23]. The TSDM method also uses a genetic algorithm 

search, discussed in Section 2.3, to discover hidden temporal structures in a time-delay 

embedded signal that are characteristic and predictive of time series events, where 

temporal structures are a predictive sequence of points found in time series data that 

signal future outcomes and events. The temporal structures found in the time series data 

are used to predict sharp movements in a time series. Originally, the TSDM technique 

was applied to making one-step time series predictions such as predicting sharp increase 

in daily stock price or welding droplet release times [10, 25, 26]. Here it is applied to 

make predictions on a weekly basis [27].  

To better explain the TSDM method, we introduce a set of concepts. The concepts 

are opportunities, events, goal function, temporal pattern, temporal structure, 

reconstructed phase space, augmented phase space, average event function, and ranking 
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function. Figure 2.5 shows how the concepts relate to the overall Time Series Data 

Mining method. As with machine learning approaches, the method is composed of a 

training stage and a testing stage. The training stage defines the prediction goal and 

identifies predictive structures in training signal of the embedded time series data. The 

testing stage uses the predictive temporal structure found during training to predict 

events.  
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Figure 2.5 Diagram of Time Series Data Mining Method 

 

2.4.1 Concepts and Definitions  
Time Series Data Mining method concepts are defined and explained with 

examples for each concept. Each concept refers to a step in the TSDM method and 

defines the actions taken in each step. 

Events are defined as important occurrences in time. Opportunities are defined as 

chances to take advantage of significant events that occur over time. Events and 
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opportunities are discovered in time series data such as a stock price time series shown 

as,  

1,..., ,nx x n N= =                                              (2.5) 

which represent the price movements of a stock over a time period with length N and 

price nx . An important occurrence in the stock price time series is an increase in the stock 

price. For example, the rise in a stock price, over a given period, represents an 

opportunity to take action by having purchased the stock before the start of that time 

period. Figure 2.6 shows the daily stock time price time series for General Motors (GM) 

from 1/01/2004 to 2/01/2004.  
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Figure 2.6 GM Stock Price Time Series 1/01/2004 –2/01/2004 

 A prediction is defined as the expectation of the future price for a stock. Predictions are 

labeled to determine the value and assessment of the prediction. A goal function g, 
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associates a future value to predictions made at the current time index n. The goal 

function provides a mapping between the temporal structures found and the events 

predicted.  For example, a goal function can be the one period percent change in a stock 

price at time index n given as, 

+1
.

( n n
n

n

)x xg
x
−

=                                          (2.6) 

A temporal pattern tp is a hidden pattern in a time series that is characteristic and 

predictive of occurrences. A temporal pattern, Dtp ∈\ , is defined as a vector of length D 

or equivalently as a point in a D-dimensional real metric space.  

A temporal structure TS is defined as the surrounding set of all points within δ of 

the temporal pattern shown as, 

{ : ( , )DTS a d tp a },δ= ∈ ≤\                                    (2.7) 

where d is the Euclidean distance metric defining a hyper-sphere with center tp and 

radius δ. Figure 2.7 shows an example of a temporal structure used to predict an event 

with the associated prediction value. 
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Figure 2.7 GM Daily Percent Change 1/01/2004 – 2/01/2004 
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A reconstructed phase space (RPS) is a d-dimensional real metric space into 

which the time series is embedded as shown in Section 2.2. The reconstructed phase 

space signal is a time-lagged version of the original time series signal [19, 20].  Figure 

2.8 shows General Motors’ percent change time series reconstructed into the phase space. 

Table 2.4 highlights the numerical mapping of the first five points in General Motors’ 

percent change time series to equivalent points in the phase space with an embedding 

dimension of 2. 
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Figure 2.8 Reconstructed Phase Space 

 

Original Time Series 
( , )t tx y Coordinates 

Reconstructed Phase Space 
1( , )t tx x + Coordinates 

(02-Jan-2003, 0.000) (0.000,  -0.0105) 
(03-Jan-2003,  -0.0105) (-0.0105, 0.0246) 
(06-Jan-2003, 0.0246) (0.0246, 0.0089) 
(07-Jan-2003, 0.0089) (0.0089,  -0.0409) 

(08-Jan-2003,  -0.0409) (-0.0409, 0.0338) 
 

Table 2.4 Phase Space Points 

  The augmented phase space is a d+1 dimensional space formed by extending the 

phase space with the additional dimension of . The augmented phase gives 

visualization to the value of the temporal structures in the reconstructed phase. The 

ng
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augmented phase space illustrated in Figure 2.9 represents the extension from the 

reconstructed phase space in Figure 2.8.  
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Figure 2.9 Augmented Phase Space 

The average event function Mµ  represents a fitness value given to a temporal 

structure, TS. This function maps a structure onto the real line to allow the temporal 

structures to be ranked ordered. The average value Mµ , of the points that are within a 

temporal structure is 

1 ,
( )M n

t M
g

c M
µ

∈

= ∑     (2.8) 

where c M  is the cardinality of M, the set of all points that are within a temporal 

structure. In contrast, the average value 

( )

Mµ  of the points that are not within a temporal 

structure is denoted as  

j j

1 ,
( ) nM

t M

g
c M

µ
∈

= ∑     (2.9) 
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where c M  is the cardinality ofj( ) jM , the set of all points not within a temporal structure. 

A ranking function f, shown in Equation 2.10, is used to show structures that 

determine optimal temporal structures that characterize and predict events. The ranking 

function, 

                                             

( )
                     min min( )

if ( ) ( )
( )   otherewise

M
c M

M c

c M c
f TS g gβ

µ β
µ

>=  − + X

X
,  (2.10) 

where β is a barrier function designed to ensure a minimum number of phase space points 

are within each temporal structure,  is the minimum prediction event value, and 

 is the cardinality of all phase space points. This particular ranking function allows 

the TSDM method to make predictions that have high average percent change values [3, 

28]. 

ming

( )c X

 These concepts are combined in the following TSDM method. The main goal of 

the TSDM method is to find temporal structure used for predicting events. The selected 

temporal structure is the structure with the highest fitness value found during the training 

period. A genetic algorithm-based optimization process, described within the TSDM 

method, is used to search for predictive temporal structures.  

2.4.2 Time Series Data Mining Method  

The steps for the Time Series Data Mining Method are listed below. These steps 

refer to diagram of the TSDM method in Figure 2.5 (shown below) and the concepts 

defined in Section 2.4.1. The TSDM method diagram precedes the list, and an 

explanation is then provided for each step in the list. 
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Figure 2.5 Diagram of Time Series Data Mining Method 

TSDM Method Steps 

1. Define the event to be predicted.  

2. Define the opportunity based on the predicted events.  

3. Evaluate events with the goal function.  

4. Embed training signal into a reconstructed phase space (RPS). 

5. Locate temporal structures and evaluate with associated fitness values. 

6. Determine predictive temporal structures in the training signal by defining a 

ranking function and an optimization formulation. 

7. Embed testing signal into RPS. 

8. Make predictions in the testing signal using the selected temporal structure. 

9. Shift the window one time-step ahead and repeat steps 1-8. 
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The first step in applying the TSDM method to a particular problem is defining a 

TSDM goal. Given an observed time series, the goal is to find otherwise hidden temporal 

structures that are predictive of events in the time series. The events to be predicted are 

determined by the defined TSDM goal.  

With a TSDM goal clearly defined, a given time series will be observed for 

predictive structures, and predictions will be made using the time series data. The TSDM 

method is composed of a training stage followed by a testing stage. Here, the time series, 

for which predictions are being made, is separated into a training signal and testing 

signal. The training signal is defined by a training period of t weeks, starting t weeks 

before the current time index n. The testing signal,  

{ , ,..., }   nY x n B E N B E= = < < ,    (2.11) 

in a time series nx , is defined by the current time index n from the beginning B, through 

the end of the testing signal E, where N is the end of the training period signal. The 

prediction point is located at length of t prediction steps away from the current time index 

n. The method makes a t-step prediction, denoted by n ng x t+= , and uses a sliding 

window, which slides one time-step ahead after the training and testing stages are 

completed for the current time index n. The widow size is the length of the training signal 

in addition to the value of the step-size n for the given prediction denoted, 

{ , ,..., }   .nW x n B E t N B E= = + < <    (2.12) 

An example of the multi-step prediction process is shown in Figure 2.10. It provides both 

a one-step prediction and a two-step prediction. The prediction step size t is chosen 

before experimentation.  
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 The training stage begins by determining the TSDM objective in terms of the 

opportunity, event, and associated goal function . The given time series is time delay 

embedded into a phase space, and an associated percent change event value is given to 

each time-step in the phase space. From the RPS and the associated percent change 

function, we form the augmented phase space. The training stage continues with the 

location of temporal structures in the reconstructed phase space. Temporal pattern 

structures are defined with the n previous time series data points. After being embedded 

into a reconstructed phase space, each point in the phase space is a temporal pattern. The 

sphere surrounding that current point in the phase space with a Euclidean distance δ is a 

temporal pattern structure. These temporal structures are evaluated using the average of 

all points that lie within the temporal structure.  

ng
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The TSDM method then defines an objective for determining the best temporal 

structure. The TSDM objective includes defining the ranking function ( )f TS , shown in 

Equation 2.8, and optimization formulation. The ranking function and the optimization 

are defined to determine predictive temporal patterns found in the training stage. The 

ranking function ( )f TS  rank orders the temporal structures, according to their fitness 

values, found during the testing stage.  

The temporal structure is determined by performing a search using a simple  

genetic algorithm (sGA). The sGA obtains maximum fitness values by finding the  

parameters that maximize the ranking function ( )f TS , denoted 
,

max ( )
tp

f TS
δ

. The steps in 

the genetic algorithm process are initialization followed by selection, fitness calculation,  

crossover, mutation, and reinsertion, which are performed until a stopping criterion is  

met. Monte Carlo search is used for random population initialization to determine the  

number chromosomes in the genetic algorithm. The sGA performs roulette selection,  

which probabilistically selects chromosomes based upon fitness value and random locus  

crossover, which merges chromosomes in a manner similar to sexual reproduction, to  

find predictive temporal structures [29-31]. The genetic algorithm evaluates fitness  

values and continues searching until the minimum fitness values have converged to a  

pre-specified convergence value. The chosen convergence value is used to halt  

the genetic algorithm search when the ratio of the worst fitness value to the best  

fitness value is equal to or above the convergence value. The results from the  

training stage are examined and used to make predictions in the following testing stage. 

During the testing stage of the method, a t-step prediction is made. For example if 

t = 1, then a one-step prediction is made. The testing time series is embedded into the 

phase space. The selected temporal structure from the training stage is used to predict 
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events at the current time index. If a sequence of embedded time series points from the 

testing signal falls within the selected temporal structure, then a prediction is made. This 

predicted event is evaluated using the appropriate goal function. The results of the testing 

stage are evaluated, the time range window is shifted one time-step ahead, and the 

process repeats starting with the training stage. The entire process of training and testing 

continues, making predictions and evaluations for each time index n, until the end of the 

time range T n . The following section presents portfolio background 

material used to form a basis for portfolio optimization. 

{ 1,..., }N= =

2.5 Portfolio Background 

A portfolio is a set of stocks from the broader market that are combined and 

weighted to become one investment [1, 5, 32]. Portfolios are evaluated on many criteria 

such as return and risk. The return of a single asset in a portfolio is the gain or loss in that 

asset’s value for a particular period, in percentage terms. The expected return is estimated 

as the average of prior returns. Portfolio returns are the combined returns of all assets in a 

portfolio with their associated weighting.  

Risk is either the volatility of future outcomes or the probability of an adverse 

outcome [2, 5]. There are two types of risk. The first is unsystematic risk or company 

specific risk, which is unique to a company stock price time series. This type of risk can 

be removed through diversification, which is a technique that combines a variety of 

investments within a portfolio with the intention to minimize the impact of any one 

security on overall portfolio performance [2]. The second is systematic or market risk, 

which is variable risk caused by economic conditions [2]. Systematic risk cannot be 

minimized through diversification because it is risk that all investors and companies incur 
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in the marketplace. Modern Portfolio Theory defines risk as the variance of expected 

returns, whereas the Capital Asset Pricing Model defines risk relative to the overall 

market. 

  Investors determine a risk vs. return trade off criterion, establishing how much 

risk they are willing to take. Traditionally, low risk levels are associated with low 

potential returns, and elevated risks levels are associated with higher potential returns. 

This research assumes an investor is risk adverse and will only except higher risk levels 

in return for a higher profit. 

Diversification is a portfolio risk management technique that combines a large set 

of investments within a portfolio. Diversification improves risk vs. return tradeoffs by 

combining stocks with different risk and return characteristics from different sectors of 

the overall market. The cross correlation and asset allocation among these assets allows 

for alternate portfolios to be generated that have better risk vs. return characteristics than 

any one asset by itself, thus becoming the main goal for portfolio optimization. In other 

words, individual company risk or unsystematic risk can be minimized by properly 

weighting the investments in a portfolio. The next sections present the concept of 

portfolio optimization and the techniques used to perform it. 

2.6 Portfolio Optimization 

Portfolio optimization is the analysis and management of a portfolio to obtain the 

maximum portfolio return for a given amount of portfolio risk. Activities such as asset 

allocation, which divides the portfolio value among assets in the portfolio, and 

diversification, allow an investor to meet specific investment goals or combination of 

investment goals. Periodic evaluations of portfolio performance and modifications of the 
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weight values, also known as portfolio management, allows for various portfolio 

combinations to meet various optimization criteria, such as maximizing return, 

minimizing risk, and achieving diversification [7].  

Efficient or optimal portfolios provide the greatest return for a given level of risk, 

or equivalently, the lowest risk for a given return given the assets in a particular portfolio 

[2, 5, 9, 33]. Modern Portfolio Theory provides techniques to create such efficient 

portfolios. The subsequent sections present Modern Portfolio Theory and the Capital 

Asset Pricing Model, providing explanations of risk, return, and optimal portfolios. 

2.6.1 Modern Portfolio Theory  

 Modern Portfolio Theory (MPT), also known as mean-variance portfolio 

optimization, was introduced by Harry Markowitz in 1952 [9]. This theory explains how 

risk adverse investors can assemble portfolios that are optimal in terms of risk and 

expected return. Modern Portfolio Theory maintains that risk should not be viewed in an 

adverse context, but rather as a characteristic part of higher reward [7, 33]. Modern 

Portfolio Theory defines risk in terms of variance of asset returns and explains how an 

efficient frontier of optimal portfolios can be constructed. An efficient frontier of optimal 

portfolios is a set of portfolios that maximize expected return for a given level of risk or 

that minimize risk for a given level of return [2, 5]. The four main steps in MPT are:  

• Security valuation 

• Asset allocation  

• Portfolio optimization  

• Performance measurement.  

The MPT operates under several assumptions about investor behavior [2, 5]: 
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1. Investors consider each investment alternative as being represented by a 

probability distribution of expected returns over some holding period; 

2. Investors maximize one-period expected utility; 

3. Investors estimate the risk of the portfolio on the basis of the variability of 

expected returns; 

4. Investors base decisions solely on expected return and risk, so their utility curves 

are functions of expected return and the variance (or standard deviation) of returns 

only; 

5. For a given level of risk, investors prefer higher returns to lower returns. 

Similarly, for a given level of expected return, investors prefer less risk to more 

risk. 

These assumptions provide a basis for determining the risk and return of a portfolio, 

which allow for effective diversification and the ability to obtain optimal portfolios. To 

determine the risk of a portfolio, the expected return for each asset in a portfolio is 

calculated as: 

1
( ) ( )( ),

n

i i
i

E r p r
=

= ∑     (2.13) 

where ip is the probability of the return  for an asset, and is the geometric average rate 

of return for the asset. The geometric average rate of return GM  for asset i is the nth root 

of the product of the holding period returns for n time periods denoted by 

ir ir

1/

1
( ) 1,

nn

i
GM i HPR

=

 = ∏  
−    (2.14) 

where HPR is the holding period return or the total return from holding an asset from 

beginning to end over a finite time period. The holding period return is defined as  
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Ending Value of Investment
Beginning Value of Investment

HPR = .   (2.15) 

A portfolio’s risk is the variance of the expected return of the assets in the portfolio. The 

variance of each asset i in the portfolio is calculated as 

[ ]
2

2

1
( ) ,

n

i i i
i

r E r pσ
=

= −∑ i     (2.16) 

where ip  is the probability of the possible rate of return , and n is the number of assets. 

This determines the risk of each asset in the portfolio. The expected return and total risk 

or standard deviation for the entire portfolio can then be determined. For a portfolio of N 

assets, the total portfolio return is the weighted average of the individual returns of the 

securities in the portfolio  

ir

1
( ) ,

N

portfolio i i
i

r n w
=

= ∑ r     (2.17) 

where is the percent of the portfolio allocated in asset i, and  is the expected rate of 

return for asset i. To calculate portfolio risk, the covariance and correlation between the 

assets in the portfolio is required. The covariance,  

iw ir

{[ ( )][ ( )]},ij i i j jCov E r E r r E r= − −    (2.18) 

for two assets i and j, is the degree in which the assets in the portfolio move together 

relative to their means over time [5]. Correlation is the simultaneous change in value of 

two numerically valued random variables. The correlation coefficient for two assets can 

be determined by 

,ij
ij

i j

Cov
cf

σ σ
=      (2.19) 
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where cf is the correlation coefficient of returns, iσ  is the standard deviation of  at time 

index n, and 

ir

jσ  is the standard deviation of at time n. Using the associated weights, 

asset variances, resulting correlation coefficients, and covariance matrices of the assets in 

the portfolio, the risk of the total portfolio can be calculated. The standard deviation for a 

portfolio

jr

portfolioσ  is  

2 2

1 1 1

( ) ,
N N N

portfolio i i i j ij
i i i

n w w w Coσ σ
= = =

= +∑ ∑∑ v    (2.20) 

where  is the weight of asset i  in the portfolio, iw 2

iσ  is the variance of returns for assets 

i, and  is the covariance between returns for assets i and j. ijCov

Alternate portfolios with various return and risk characteristics can be constructed 

by varying the weights of the assets in the portfolios. As stated earlier, a mean-variance 

efficient frontier, shown in Figure 2.11, for optimal portfolios represents the set of 

portfolios that has the maximum rate of return for each level of risk, or the minimum risk 

for every level of return [2, 5].  
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Figure 2.11 Efficient Frontier 
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The efficient frontier illustrates various optimal portfolios in terms of risk and return with 

portfolio H representing the portfolio with all the weighting in the asset with the highest 

return and portfolio L representing the portfolio with all the weighting in the asset with 

the lowest risk. The other points inside the efficient curve represent portfolios that are not 

optimal in terms of risk vs. return.  

The efficient frontier is determined through a constraint maximization process  
 
discussed in detail in [2, 5, 7, 9, 34, 35] and shown as  and max ( , )

portfolio

portfolio i ir w
σ

,min ( , )
portfolio

portfolio i i i
r

w rσ σ . When the portfolio return equation is solved to obtain the          

maximum return of the portfolio, the portfolio risk is held constant. On the other hand,  
 
when the portfolio risk is solved to obtain the minimum risk, the portfolio return is held  
 
constant. Once equally spaced portfolios are created, portfolios are optimized to  
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maximize portfolio return for a given value of portfolio risk or minimize portfolio risk for  
 
a given value of portfolio return. Portfolios with equally spaced risk or return values are  
 
created to form the alternate portfolio combinations, which form the efficient frontier. For  
 
instance, when risk is held constant, N - 2 equally spaced risk values between the risk of  
 
portfolios H and L are calculated. On the other hand when return is held constant, N – 2  
 
equally spaced portfolio return values between the portfolio return values of portfolios H  
 
and L are calculated.  

 
Portfolio optimization is accomplished by iteratively adjusting portfolio asset 

weights. This process is repeated for each portfolio at time index n for the given time 

range T.  Modern Portfolio Theory implies that all investors should only select from 

portfolios that are on the efficient frontier and that investors only differ in their 

expectations of risk and return [5, 35]. In other words, an optimal portfolio is an efficient 

frontier portfolio that has the highest utility for a given investor. The following section 

explains the Capital Asset Pricing Model and specifically how an optimal portfolio is 

selected. 

2.6.2 Capital Asset Pricing Model  

The capital asset pricing model (CAPM) is an economic model for valuing 

securities by determining the relationship of risk and expected return [1, 36, 37]. The 

CAPM model, extending modern portfolio theory, is based on capital market theory and 

the idea that investors demand additional expected return for additional levels of risk [5,  

36,  37]. The risk-free rate of return fr  is a theoretical interest rate returned on an 

investment that is completely free of risk. The 90-day Treasury bill, which is a United 

States government-backed security, is a close approximation, since it is virtually risk-free 

http://www.investorwords.com/2539/interest_rate.html
http://www.investorwords.com/4244/returned.html
http://www.investorwords.com/2599/investment.html
http://www.investorwords.com/5060/Treasury_Bill.html
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[5]. By introducing the risk-free asset, the CAPM allows for separation of risk from 

return and a model from determining the required rate of return for assets and portfolios.  

The CAPM operates under several assumptions about investor behavior. The most 

important assumptions for this research are: 

1. All investors are Modern Portfolio Theory investors and want portfolios that 

are on the efficient frontier. 

2. Investors can lend and borrow at the risk-free rate of return. 

3. Capital Markets are in equilibrium, and all investments are properly priced 

according to their specific risk.  

The CAPM allows for further analysis of risk in assets and portfolios by introducing the 

notion of beta. Beta is a quantitative measure of the volatility of a given stock or portfolio 

relative to the overall market [1, 2, 5]. The beta iβ  value for an asset i in a portfolio and 

an entire portfolio is  

( , ) ,
( )
i m

i
m

Cov r r
Var r

β =     (2.21) 

( , )
( ) ,

( )
p m

portfolio
m

Cov r r
n

Var r
β =    (2.22) 

where  is the return for stock i,  is the vector n-period market returns, and  is the 

vector of n-period  portfolio returns over the given time range. The market has a beta 

value of one. A risk-free asset has a beta value of zero. The risk-free asset has a definite 

expected return with the assumption of zero risk or zero variance of expected returns. The 

risk-free asset has zero correlation of with all other risky assets and allows for an investor 

to make alternative risk and return tradeoffs. By introducing the notion of beta and the 

ir mr pr
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risk-free asset, a new efficient frontier called the Capital Market Line is derived. The 

Capital Market Line denoted by 

( )portfolio f portfolio m fr r r rβ −= +     (2.23) 

represents a line from the y-intercept at the risk free rate of return tangent to the original 

efficient frontier, shown in Figure 2.12. 
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Figure 2.12 Capital Market Line 

The CAPM allows for various possible combinations of investing in an efficient 

portfolio and the risk-free asset to be formed. This linear risk-return combination allows 

us to construct of portfolios that are superior, in terms of risk vs. return, to portfolios on 

the original efficient frontier. Using of this new efficient frontier, shown in Figure 2.12, 

the point of tangency on the Capital Market Line is defined as the market portfolio M [1, 
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2, 5]. The market portfolio M refers to a theoretical portfolio that is completely 

diversified containing every security available in a given market, such as stocks, bonds, 

options, real estate, and other forms of investments. Due to diversification, this portfolio 

completely eliminates unsystematic risk, encouraging investors to invest in this portfolio 

and borrow or lend at the risk-free rate of return. The market portfolio therefore has no 

unsystematic risk, which implies it only has systematic market risk or risk that cannot be 

diversified away. Since the market portfolio M contains all available risky assets it has no 

unsystematic risk, and it is defined as an optimal investment choice for all investors [1, 2, 

5]. Defining the market portfolio M, on the CML provides a suitable way to pick an 

optimal portfolio from any given efficient frontier.  
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Chapter 3 Methods 

 This chapter presents the combined Time Series Data Mining Portfolio 

Optimization method of selecting and optimizing weekly stock portfolios. It explains the 

adaptations of the Time Series Data Mining (TSDM) method and the modified portfolio 

optimization process. The TSDM method provides a predictive method for stock 

selection, and adaptations of Modern Portfolio Theory, and the Capital Asset Pricing 

Model techniques are used to optimize weekly portfolios. The chapter concludes with an 

overview the TSDM-Portfolio Optimization trading strategy. 

Extending the Time Series Data Mining method, multiple-step weekly predictions 

are made and combined into weekly portfolios. Once the securities are selected by the 

TSDM method, they are combined into optimal weekly portfolios that maximize portfolio 

return for a given level of portfolio risk. Techniques used in creating optimal portfolios 

are adapted from Modern Portfolio Theory and the Capital Asset Pricing Model. 

Combining weekly stock selection and portfolio optimization, a weekly trading strategy 

is created. The trading strategy buys all stocks selected from the TSDM stock selection 

method at the beginning of the trading week, with associated weight values determined 

by the associated portfolio optimization techniques. The entire portfolio is sold at the end 

of the trading week, and this process is repeated for each week in the given time range.  

This trading strategy takes an active portfolio management approach to 

optimizing portfolios. An active approach is one with frequent, in this case weekly, 

trading activity. This is in contrast to a passive approach such as a buy and hold strategy.  

The combined method, shown in Figure 3.1, performs stock selection, portfolio 

construction, portfolio optimization, and performance calculation. Stock price time series 
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data for all stocks in a given market are provided to the TSDM Stock Selection method 

discussed in Section 3.1. Each stock price time series is processed one at a time, and the 

stock selection method repeats until predictions for all stocks in the index are made. Once 

predictions are made, portfolios with equally weighted assets are constructed and then 

optimized. After portfolio optimization is complete, portfolio performance is calculated 

for each weekly portfolio. The following section describes the Time Series Data Mining 

stock selection method. 

 

Stock Market
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Portfolio 
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Weekly 
Portfolio 

Construction 

TSDM Stock 
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Figure 3.1 Time Series Data Mining Portfolio Optimization Method 
 

3.1 Stock Selection Method 

The Time Series Data Mining method is used as a stock selection tool that selects 

assets used in constructing weekly portfolios. The goal of TSDM stock selection, shown 

in Figure 3.2, is to select stocks that will increase in price. The TSDM method is 

extended to explore multiple time-step prediction capabilities. The multiple time-step 

approach to the TSDM method makes predictions out further than one time step. For 

instance, a one-step prediction is in the form of 1n ng x += , and a t-step prediction is in the 

form of , where t is the number of weeks ahead the prediction is being made.  n ng x += t
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assets and performance will be different for each weekly portfolio due to the active 

portfolio management approach in which each portfolio is bought at the beginning of the 

week and sold at the end of the week. Weekly stock predictions are made with associated 

goal function values (weekly stock price percent change) that are either positive, 

negative, or zero. A positive prediction value means that the stock price increased. A 

negative prediction value means the stock price decreased for that week. A prediction 

value of zero means no prediction was made in that week for that stock. The next section 

describes the modified portfolio optimization process. 

3.2 Modified Portfolio Optimization Method 

 Once the equal weighted portfolios are created, portfolio optimization techniques 

are used to optimize the weekly portfolios. The goal of the portfolio optimization is to 

maximize portfolio return for a given level of portfolio risk. As stated earlier, the risk of a 

portfolio is defined as the standard deviation of expected returns of the assets in the 

portfolio. Modern Portfolio Theory (MPT) provides techniques to adjust the portfolio 

weights, to maximize portfolio return for each level of risk.  

The efficient frontier of portfolios represents the set of optimal portfolios from 

which to choose. To construct an efficient frontier from a given equally weighted 

portfolio, a weight adjustment process must be conducted. The weight adjustment process 

is a constrained optimization problem formulated by maximizing portfolio return for 

given portfolio risk values. The predictive process uses expected returns generated from 

the training period signal to create the covariance matrix of expected returns used in 

calculating portfolio risk. The covariance matrix represents the variance between 
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expected returns for each asset in the portfolio. The method iteratively adjusts weight 

values using the process listed below: 

1.  Calculate portfolio return ( ),  1portfolior t t =  and portfolio risk ( ),  1portfolio t tσ =  

with equally weighted assets. 

2.  Hold portfolio risk, ( )portfolio tσ , constant and adjust weights ( , to 

achieve a higher portfolio return . 

1,..., )nw w

( )portfolior t

3. If ∑  and  1( ,..., ) 1,   0,   n nw w w= ≠ ∀ n n

t

( ) ( 1),  (2,..., )portfolio portfolior t r t t> − =

Continue to adjust portfolio weights to achieve a higher return value. 

4.   If  then ( ) ( 1)portfolio portfolior t r t≤ − max( ( ), ( 1))portfolio portfolio portfolior r t r= − . 

 Using the Capital Asset Pricing Model (CAPM), portfolio returns and risk can be 

separated using the Capital Market Line (CML) equation. Making assumptions about the 

risk-free rate of return, a line can be extended from the risk-free rate of return, tangent to 

the efficient frontier, constructing the CML. Incorporating previously stated assumptions 

of the CAPM, and the derived market portfolio M from the CML, a new portfolio 'M  is 

now introduced. The new portfolio 'M  is the tangent point located on the constructed 

CML extended from the risk-free rate of return. The portfolio 'M , shown in Figure 3.3, 

is the equivalent, in terms of location on the CML, to the original optimal market 

portfolio M, but using only the stocks selected during the Time Series Data Mining stock 

selection process. This concept is essential, because it provides the criterion for selecting 

an optimal portfolio from the new efficient frontier created by the CML. An optimal 

portfolio, for performance calculation purposes, is defined as the optimal market portfolio 

'M  or the portfolio with the lowest risk if the optimal market portfolio 'M  return is less 
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than the risk-free rate of return fr . The next section presents and explains the complete 

Time Series Data Mining Portfolio Optimization Method.  
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optimized using the adapted portfolio optimization techniques discussed in Sections 2.6 

and 3.2.  

The steps to formulate a trading strategy using the Time Series Data Mining 

Portfolio Optimization approach are listed below: 

1. Determine entire time range for stock predictions including training period 

signal length. 

a. Determine portfolio strategy time period (daily, weekly, monthly, 

etc.). 

2. Determine desired prediction step size .  1t ≥

3. Make stock selections using TSDM stock selection method. 

a. Choose stock market index for stock price data set. 

b. Define goal function and ranking function. 

c. Determine time series embedding and temporal pattern length. 

d. Define genetic algorithms parameters (Section 2.4.2). 

4. Construct portfolio matrix. 

a. p stocks  by N time periods. 

5. Perform Mean Variance Portfolio Optimization (Sections 2.6 and 3.2). 

a. Create efficient frontier. 

b. Select an approximate risk-free rate of return. 

c. Create Capital Market Line. 

d. Select optimal portfolio.  

e. Repeat for a. through d. for all weekly portfolios  

6. Calculate portfolio and model performance. 
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Portfolio performance analysis is performed on all generated portfolios for that 

time range. Weekly portfolio return performance and total performance are measured and 

compared against the overall market performance as a baseline. The TSDM Stock 

Selection method prediction accuracy results are compared against the market baseline 

prediction accuracy measure. Portfolio performance analysis and results, including return, 

risk, transaction cost, prediction accuracy, and Sharpe’s ratio are presented in Chapter 4.  
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Chapter 4 Evaluation 

This chapter presents an evaluation of the combined method discussed in Chapter 

3. Historical stock market data is used to evaluate the Time Series Data Mining Portfolio 

Optimization (TSDMPO) trading strategy. The data is comprised of stock price time 

series of stocks in a particular market index. The chapter contains an explanation of the 

TSDMPO trading method stock market application, experimental set-up, and 

experimental results including a transaction cost model. 

4.1 Stock Market Application  

 The combined Time Series Data Mining Portfolio Optimization method is used to 

identify profitable trading opportunities and create wealth in an active trading 

environment. The evaluation of this trading strategy is performed in a simulated market 

where stocks are bought on the first trading day of the week and sold on the last trading 

day of the week. In applying any trading strategy in an actual market setting, investors 

must pay transaction costs in order to trade securities. The weekly trading strategy makes 

weekly predictions over specific time ranges and combines the predictions into weekly 

portfolios used to increase profit, outperform market return benchmarks, and overcome 

transaction costs.  

To simulate an active trading environment, investors are able to implement this 

trading strategy using large online trading sites such as TDWaterhouse.com, Etrade.com, 

and Ameritrade.com, which have allowed various types of investors to set up and easily 

manage their own investments. Combining the availability of current financial data 

access and the ability to independently manage investments the Time Series Data Mining 

Portfolio Optimization method trading strategy is explored in a simulated market 
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environment where transaction cost are taken into consideration. The investment strategy 

takes advantage of predictive stock selection and optimal asset allocation to trade 

portfolios weekly. The next section describes the transaction cost model used to 

determine simulated model portfolio returns. 

4.2 Transaction Cost Model 

A transaction is the buying or selling of a security, and transaction costs are those 

associated with trading securities [27,36]. When making trades in the stock market, 

investors incur transaction costs that are paid for each transaction made. Transaction cost 

can erode the total returns gained from investments. These adverse effects must be 

considered to determine whether the trading strategy is able not only to increase wealth 

but also overcome the associated cost with making those trades. Transaction costs have 

two components. One cost is broker commissions or fees that are charges assessed by an 

agent in return for arranging the purchase or sale of a security [33-35]. Another cost is the 

spread, commonly referred to as bid-ask spread, which is the difference between the ask 

price (the price at which an investor is willing to sell a particular security in the 

secondary market) and the bid price (the price at which an investor is willing to buy a 

particular security in the secondary market) [33-35].  

The commission value is determined by the typical price paid to buy or sell shares 

of stock at an online trading site such as TDWaterhouse.com or Etrade.com. The 

commission per transaction is $10 per stock or $20 for a round trip (buy and sell). A 

model for the approximate bid-ask spread was developed by Roll [36]. Assuming that the 

markets are efficient and that the probability distribution of observed price changes is 

stationary in short intervals, the spread is modeled by the first order covariance of 
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successive price changes [36]. A modified version the equation is used to model bid-ask 

spread and neglects the downward bias in the original equation, which makes spread 

values negative [36]. The bid ask spread is modeled as: 

2 cov( ( )),nBAS S x= n    (4.1) 

where nBAS is the bid-ask spread at time index n, and  is the stock closing price 

training period signal. The total transaction cost for a security at time index t is the 

commissions plus the bid-ask spread shown,  

( )nS x

,n nTC BAS Cn= +     (4.2) 

where TC  is the transaction cost at time index n, n nBAS  is the bid-ask spread at time 

index n, and  is the commission at time index n. The following section explains the 

experiment set-up used in evaluating the TSDMPO trading strategy. 

nC

4.3 Experiments  

 The experiments are divided into groups based on the prediction time-step for 

each experiment. Prediction time steps 1, 2, 3, and 4 are used in exploring the multi-step 

capabilities of the Time Series Data Mining Stock Selection method. Experiments are 

also grouped based on the chosen model testing time range of the chosen data set. 

The data set used in the experiments is obtained from http://finance.yahoo.com 

and is comprised of weekly stock market data from the Dow Jones Industrial Average. 

The Dow Jones Industrial Average (DJIA) is a price-weighted average of thirty large 

capital stocks traded on the New York Stock Exchange. The stock listing for the Dow 

Jones Industrial Average is shown in Appendix A.1. The stock market data is in the form 

of weekly open price, close price, high price, low price, and trading volume. The data set 

http://finance.yahoo.com/
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spans from January 1, 2002 to January 1, 2003 and January 1, 2003 to January 1, 2004. 

Theses time ranges were selected to test the method in both bull (generally rising stock 

prices) and bear (generally declining stock prices) market conditions.   

Time Series Data Mining Stock Selection parameters involving the training period 

and genetic algorithm based optimization are held constant through each experiment. The 

time series is embedded with a dimension of 3, which creates predictive structures using 

the three weeks of closing price data including the current time point and the two 

previous points. The initial genetic algorithm population is set to 30 to create a 

population large enough for the genetic algorithm to make subsequent solution 

generations. The algorithm has halting criterion set to stop the genetic algorithm search 

when fitness values converge to a value set at 0.9 multiplied by the maximum fitness 

value. The training period is 26 weeks and was chosen by empirically comparing results 

of each market index experiment using training ranges varying form 5 weeks to 52 

weeks.  

Portfolio optimization parameters include the initial portfolio value and the risk-

free rate of return used in calculating model returns and determining optimal portfolio 

selection. The initial portfolio value is reset to $100,000 dollars at the beginning of every 

trading week to provide a basis on calculating weekly returns and adjustments for 

transaction cost. The risk-free rate of return is the 90-day Treasury bill rate of return at 

the beginning of the time range. The 90-day Treasury bill rate of return was 1.68 % at 

January 1, 2002 and 1.19 % at Jan 1, 2003. 
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4.4 Results  

This section presents results for weekly-optimized portfolios from the Dow Jones 

Industrial Average data used in experiments. Optimized portfolios or mean variance 

efficient portfolios are defined Chapter 2 and further discussed Chapter 3. These 

portfolios are described by the market portfolio 'M  defined by the Capital Market Line 

defined in Chapter 3. Results from the prediction-step experiments conducted in a stock 

market index will be compared to the same complete market index as a benchmark. The 

model return results from optimized portfolios generated from stock selection using the 

Dow Jones Industrial Average index will be compared against the DJIA index market 

rate of return and buy and hold returns. The model risk will be compared using portfolio 

beta values, which measure risk relative to the overall market. The index benchmarks are 

performance for the entire index, while the model portfolios are specific segments of the 

market.   

4.4.1 Portfolio Return 

Portfolio returns are presented in this section and are defined in Chapters 2 and 3. 

Portfolio returns are calculated by using the associated weight values determined from 

the portfolio optimization process and described in Sections 3.2 and 3.3. A vector of 

optimal portfolio returns,  

[ ( ) , 1,..., ]optimal portfolior r n n N= = ,   (4.3) 

contains the optimal portfolio returns for each week over the entire time range T. 

The combined model rate of return is the geometric average of weekly portfolio returns 

over the entire time range T shown as 
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The adjusted model rate of return is the combined model rate of return with the average 

weekly transaction cost, shown in Section 4.2, subtracted from it denoted by  
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( ( )

( ) ( )  
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.  (4.5) 

The total model return is the product of the adjusted model rate of return for the time 

range, 

1

( )   1.
N

Model Model
n

R rr n
=

 
= − 
 
∏    (4.6) 

Weekly portfolio return values are calculated and then averaged to obtain an overall 

performance value for the time range. The average model risk is the mean of all weekly 

portfolio risk values over the time range. Tables 4.1 and 4.2 provide numerical results for 

the Time Series Data Mining Portfolio Optimization model, using Dow Jones Industrial 

Average stock data, with prediction steps 1, 2, 3, and 4. 

Dow Jones Industrial 
Average  

Prediction Time-Step 

1/01/2002 – 1/01/2003 1 2 3 4 
Model Rate of Return 1.898 % 2.112 % 1.105 % 0.894 % 
Adjusted Model Rate of 
Return 1.897% 2.111 % 1.104 % 0.893 % 

Average Weekly 
Transaction Cost ($) 97.00 103.00 107.00 97.00 

Total Model Return 151.240 % 172.757 % 67.638 % 50.588 % 
 

Table 4.1 Dow Jones Industrial Average Return Performance 1/01/2002 –1/01/2003  
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The model rate of return was greater than the average market rate of return in the 

January 1, 2002 through January 1, 2003 time period. The average weekly market rate of 

return was -0.315 % for the time period. This also led to the total model return also being 

greater than the market total buy and hold return in the time period. The total market buy 

and hold return was –18.070 % for this time period. Average weekly transaction cost had 

little effect on overall return performance due to the small number of stocks selected on a 

weekly basis and low estimated bid ask spread values. 

Dow Jones Industrial 
Average 

Prediction Time-Step 

1/01/2003 – 1/01/2004 1 2 3 4 
Model Rate of Return 2.249 % 1.876 % 1.704 % 2.302 % 
Adjusted Model Rate of 
Return 2.248 % 1.875 % 1.703 % 2.301 % 

Average Weekly 
Transaction Cost($) 104.00 104.00 112.00 106.00 

Total Model Return 197.324 % 144.056 % 121.256 % 178.456 % 
 

Table 4.2 Dow Jones Industrial Average Return Performance 1/01/2003 –1/01/2004 
 

The model rate of return was greater than the average market rate of return in the 

January 1, 2003 through January 1, 2004 time period. The average weekly market rate of 

return was 0.351 % for the time period. This also led to the total model return also being 

greater than the market total buy and hold return in the time period. The total market buy 

and hold return was 24.333 % for this time period. Average weekly transaction cost were 

higher than the previous year due to the model making more selections in better bull 

market conditions. However, the transaction cost still had little effect on overall return 

performance. 

The poor market conditions that existed from January 1, 2002 through January 1, 

2003 led to an overall lower performance compared to the results for the time period 
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spanning from January 1, 2003 through January 1, 2004. In both experiments, the 

multiple step predictions were able to provide positive results by outperforming the 

overall market and overcoming associated transaction costs. The overall portfolio 

performance results were consistent between both experiment time ranges, by showing a 

slight decrease in the rate of return as the prediction step increased, except for the 

increase in rate of return for prediction step size 2 in year 2002 experiments and the 

increase for rate of return in prediction step size of 4 in year 2003 experiments.  

Figures 4.1 through 4.4 show the 1, 2, 3, and 4 step cumulative weekly returns for 

the TSDMPO model vs. the benchmark for the year 2002. Figures 4.5 through 4.8 show 

the 1, 2, 3, and 4 step cumulative weekly returns for the model vs. the benchmark for the 

year 2003. The graphical representation of these results shows how the model compares 

to the entire market, as a benchmark, over the given time ranges.  
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Figure 4.1 Dow Jones Industrial Average Portfolio Rate of Return 
 1/01/2002 – 1/01/2003 One-step prediction 

 
Figure 4.1 represents the one-step TSDMPO model cumulative weekly rate of 

return compared with the DJIA index cumulative weekly rate of return. This plot shows 

that the TSDMPO model outperforms the benchmark index over the time period. The 

model rate of return is lower than the benchmark for a very brief period of weeks early in 

the time period and performs very strongly later in the time period. The one-step 

prediction model shows greater rate of return volatility than the market as show by Figure 

4.1 with larger moves in cumulative weekly return. The model’s largest one week loss 

was 18.08% during week 26, and the model’s largest one week gain was 26.63% during 

week 40, for this time period. 
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Figure 4.2 Dow Jones Industrial Average Portfolio Rate of Return 

1/01/2002 – 1/01/2003 Two-step prediction 
 

Figure 4.2 represents the two-step TSDMPO model cumulative weekly rate of 

return compared with the DJIA index weekly rate of return. This plot shows that the 

TSDMPO model outperforms the benchmark index over the time period. The total model 

rate of return never goes lower than the rate of return benchmark index and has strong 

performance in the second half of the year. The two-step prediction model shows greater 

rate of return volatility than the market as show by Figure 4.2, but does not show as much 

volatility as the one-step prediction model. The model’s largest one week loss was 

13.56% during week 46, and the model’s largest one week gain was 26.07% during week 

39, for this time period. 
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Figure 4.3 Dow Jones Industrial Average Portfolio Rate of Return 

1/01/2002 – 1/01/2003 Three-step prediction 
 

Figure 4.3 represents the three-step TSDMPO model cumulative weekly rate of 

return compared with the DJIA index weekly rate of return. This plot shows that the 

TSDMPO model outperforms the benchmark index over the time period. The total model 

rate of return has periods of under performance in the first half of the time period, but 

performs stronger later in the time period by outperforming the market rate of return 

benchmark. The three-step prediction model shows greater rate of return volatility than 

the market as show by Figure 4.3, but shows less volatility than the one-step and two-step 

prediction models. The model’s largest one week loss was 16.92% during week 31, and 

the model’s largest one week gain was 12.80% during week 26, for this time period. 
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Figure 4.4 Dow Jones Industrial Average Portfolio Rate of Return 

1/01/2002 – 1/01/2003 Four-step prediction 
 

Figure 4.4 represents the four-step TSDMPO model cumulative weekly rate of 

return compared against the DJIA index weekly rate of return. This plot shows that the 

TSDMPO model outperforms the benchmark index over the time range. The model rate 

of return has periods where performance is relatively close to the return benchmark index 

in the first half of the time range, but shows stronger performance later in the time range. 

The four-step prediction model shows greater rate of return volatility than the market and 

similar rate of return volatility to the three-step model, but shows less volatility than the 

one-step and two-step prediction models. The model’s largest one week loss was 11.54% 

during week 19, and the model’s largest one week gain was 12.76% during week 25, for 

this time period. 
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Figure 4.5 Dow Jones Industrial Average Portfolio Rate of Return 

1/01/2003 – 1/01/2004 One-step prediction 
 

Figure 4.5 represents the one-step TSDMPO model cumulative weekly rate of 

return compared against the DJIA index weekly rate of return. This plot shows that the 

TSDMPO model outperforms the benchmark index over the time range. The model rate 

of return has periods where performance is lower that the rate of return benchmark index 

early in the time range, but outperforms the benchmark significantly later in the time 

range. The one-step prediction model shows greater rate of return volatility than the 

market, but the majority of the volatility is in the positive direction. The model’s largest 

one week loss was 6.35% during week 1, and the model’s largest one week gain was 

14.90% during week 38, for this time period. 
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Figure 4.6 Dow Jones Industrial Average Portfolio Rate of Return 

1/01/2003 – 1/01/2004 Two-step prediction 
 

Figure 4.6 represents the one-step TSDMPO model cumulative weekly rate of 

return compared against the DJIA index weekly rate of return. This plot shows that the 

TSDMPO model outperforms the benchmark index over the time range. The model rate 

of return has periods where performance is slightly lower that the rate of return 

benchmark index early in the time range, but then quickly outperforms the benchmark 

throughout the time range. The two-step prediction model shows greater rate of return 

volatility than the market and has similar volatility to the one-step prediction model. The 

model’s largest one week loss was 8.30% during week 10, and the model’s largest one 

week gain was 12.67% during week 47, for this time period. 
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Figure 4.7 Dow Jones Industrial Average Portfolio Rate of Return 

1/01/2003 – 1/01/2004 Three-step prediction 
 

Figure 4.7 represents the one-step TSDMPO model cumulative weekly rate of 

return compared against the DJIA index weekly rate of return. This plot shows that the 

TSDMPO model outperforms the benchmark index over the time range. The model rate 

of return has periods where performance varies around the rate of return benchmark 

index early in the time range, but strongly outperforms the benchmark later in the time 

range. The three-step prediction model shows greater rate of return volatility than the 

market, but is less volatile than the one-step and two-step prediction models. The model’s 

largest one week loss was 10.88% during week 42, and the model’s largest one week gain 

was 10.62% during week 44, for this time period. 
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Figure 4.8 Dow Jones Industrial Average Portfolio Rate of Return 

1/01/2003 – 1/01/2004 Four-step prediction 
 

Figure 4.8 represents the one-step TSDMPO model cumulative weekly rate of 

return compared against the DJIA index weekly rate of return. This plot shows that the 

TSDMPO model outperforms the benchmark index over the time range. The model rate 

of return has a brief period where performance is lower that the rate of return benchmark 

index early in the time range, but significantly outperforms the benchmark later in the 

time range. The four-step prediction model shows greater rate of return volatility than the 

market and has similar volatility to the one-step and two-step prediction models. The 

model’s largest one week loss was 8.84% during week 8, and the model’s largest one 

week gain was 18.61% during week 16, for this time period. 

Figures 4.1 though 4.8 plot the model return adjusted for transaction cost at 

different prediction time steps within the two time periods. The results from each 
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experiment are consistent with numerical results and show the model outperforming the 

market benchmark as time continues. From January 1, 2002 through January 1, 2003, the 

return performance was positive despite negative market conditions. From January 1, 

2003 through January 1, 2004, the return performance improved over the previous year’s 

performance in three out of four prediction time steps. 

Figure 4.9 shows an example of an observed optimal portfolio that occurred in 

2003 using the TSDMPO trading strategy with a one-step prediction. This visual 

representation shows the selection of an optimal portfolio, which is theoretically 

explained in Section 2.6. The Optimal Risk Portfolio 'M  represents the optimal portfolio 

selected during experimentation. The graph also shows the Capital Market Line 

extending from the risk-free rate of return, fr  at 1.19 %. The next section evaluates 

portfolio risk and overall model risk performance. The next section presents model 

portfolio risk results. 
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Figure 4.9 Observed Optimal Portfolio w/Efficient Frontier  

4.4.2 Portfolio Risk 

An evaluation of model portfolio risk is presented in this section. The risk of a 

portfolio can be determined in various ways. Traditional modern portfolio theory 

determines risk, a posteriori, as the variance and standard deviation of expected returns. 

The Capital Asset Pricing Model determines risk in terms of beta, β. Portfolio risk, 

portfolioσ , and portfolio beta, portfolioβ , are defined in Chapters 2 and 3. Other popular 

measures of risk have emerged and will allow for further risk analysis of the weekly 

portfolios created during the Time Series Data Mining Portfolio Optimization method. 

The Sharpe’s Ratio is calculated to further analyze the risk vs. return of generated weekly 

portfolios.  
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The Sharpe’s ratio is a ratio developed by William Sharpe in 1966 to measure 

risk-adjusted performance [37]. The risk adjusted return measures how much risk a 

portfolio assumes to earn its returns. This is usually expressed as a number or a rating. 

The Sharpe’s ratio sr is defined as, 

,portfolio f

portfolio

r r
sr

σ
−

=     (4.7) 

where  is the model average portfolio return, portfolior fr  is the market rate of return, 

and portfolioσ  is the average portfolio standard deviation for the time range. The Sharpe 

ratio determines whether the returns of a portfolio are because of wise investment 

decisions or a result of taking excess risk. This ratio is useful in comparing portfolios and 

assets in terms of volatility to return. A high Sharpe’s Ratio implies the portfolio or stock 

is realizing sufficient or good returns for each unit of risk. The measure is used here to 

evaluate the model average portfolio return and risk results. 

 Tables 4.3 and 4.4 contain model portfolio risk results. Weekly portfolio risk 

values are calculated for each risk measure. These weekly values are averaged to obtain 

an overall performance value for the time range. The average portfolio risk is the mean of 

all weekly portfolio risk values portfolioσ  over the time range. The average portfolio beta is 

the mean of all beta values portfolioβ  over the time range. The Shape’s Ratio is calculated 

using adjusted model rate of return, risk-free rate of return and, average model risk. 

 

 

 

 



Chapter 4 Evaluation 63 

DJIA Prediction Time-Step 
1/01/2002 – 
1/01/2003 

1 2 3 4 

Average 
Portfolio Risk  3.526 3.299 2.956 3.106 

Average 
Portfolio Beta  2.534 2.692 2.471 2.620 

Model 
Sharpe’s Ratio 

3.973 4.544 2.615 1.999 

 

Table 4.3 Dow Jones Industrial Average Risk Analysis 1/01/2002 – 1/01/2003 

 

DJIA Prediction Time-Step 
1/01/2003 – 
1/01/2004 

1 2 3 4 

Average 
Portfolio Risk  2.608 3.006 2.683 2.656 

Average 
Portfolio Beta  2.051 2.113 1.626 2.610 

Model 
Sharpe’s Ratio 

6.152 4.443 4.515 6.18 

 

Table 4.4 Dow Jones Industrial Average Risk Analysis 1/01/2003 – 1/01/2004 

The average portfolio risk values for each prediction step are similar to each 

other, with an overall model average of 3.22 in 2002 experiments and 2.74 in 2003 

experiments. The average portfolio betas for each prediction step are also similar to each 

other, with an overall model average of 2.58 in the 2002 experiments and 2.10 in 2003 

experiments. The Sharpe’s ratio value reported is the average value over the time range, 

and results do not assume that model portfolio returns must exceed the risk-free rate of 

return given by the 90-day Treasury bill at the start of each period, with 1.68 % on 

January 1, 2002 and 1.19 % on January 1, 2003. The average Sharpe’ ratio was 3.28 for 

year 2002 experiments and 5.32 for year 2003 experiments. Sharpe’s ratio values greater 

than one are good, and values greater than two are outstanding. This implies that 
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experimental results were better than outstanding [43]. The next section shows portfolio 

prediction accuracy results. 

4.4.3 Prediction Accuracy 

During the testing stage of the Time Series Data Mining (TSDM) method, 

predictions are evaluated. Stock predictions are made and then given values that are 

either positive, negative, or zero. A positive prediction value means that stock price went 

up, and a negative prediction value means the stock price went down for the week. The 

underlying TSDM trading objective is to find patterns that are predictive of increases in a 

stock price. Determining prediction accuracy of the stock selection process is another 

indicator of how much risk is taken in investing in these portfolios. If the stock selection 

tool is making accurate predictions for positive trading opportunities, then there is less 

inherent risk in making trades based on the model. The ratio between the number positive 

trades and the number of negative trades is an important measure to determine whether 

the stock selection process is accurate given any market conditions. If market conditions 

are good, the stock selection should be able to select more stocks with positive gains to 

add to a weekly portfolio. In contrast, if market conditions are poor, the model may select 

fewer if any stocks to add to the weekly portfolios.  

The prediction accuracy also plays a role in the risk of each portfolio. If the 

predictions are more accurate, there is less unsystematic risk present in each weekly 

portfolio. In comparison to the market baseline positive prediction accuracy, if the model 

prediction accuracy is higher, there is less risk than the market in our portfolios. 
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The prediction accuracy determines the total number of trades in a given time 

index n and gives a percent value equal to the ratio between the number of positive trades 

and the total number of trades made for that week. The prediction accuracy is defined as 

,n
n

n

PTP
TN

=      (4.8) 

where  is the number of positive trades, and TN  is the total number of trades in the 

current week n. The total prediction accuracy is an average of the weekly prediction 

accuracies over the entire time range T denoted by 

nPT n
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P
P

N
==
∑

      (4.9) 

The model percent accuracy is measured against a complete market baseline percent 

accuracy. The market baseline percent accuracy measure incorporates all possible weekly 

trades for the time period and determines the number of weekly trades that had positive 

percent gains and negative percent gains. This comparison gives a baseline against which 

to measure how well our prediction accuracy fares against purchasing all given assets in a 

market index. Tables 4.5 and 4.6 include results on the model and market accuracy. 

 

DJIA Prediction Time-Step 
1/01/2002 – 
1/01/2003 

1 2 3 4 

Positive Model  
Accuracy 0.500 % 0.445 % 0.412 % 0.383 % 

Positive 
Market 
Baseline 

0.452 % 0.452 % 0.452 % 0.452 % 

 

Table 4.5 Prediction Accuracy Analysis 1/01/2002 – 1/01/2003  

 



Chapter 4 Evaluation 66 

DJIA Prediction Time-Step 
1/01/2003 – 
1/01/2004 

1 2 3 4 

Positive Model  
Accuracy 0.594 % 0.515 % 0.569 % 0.550 % 

Positive 
Market 
Baseline 

0.537 % 0.537 % 0.537 % 0.537 % 

 

Table 4.6 Prediction Accuracy Analysis 1/01/2003 – 1/01/2004 

The prediction accuracy for the model was greater than the market baseline 

accuracy in the one-step prediction, with date range January 1, 2002 through January 1, 

2003, experiment. In addition, this was the only experiment out of the four prediction 

model experiments with date range, January 1, 2002 through January 1, 2003, that had 

prediction accuracy greater than the market baseline accuracy. In contrast, three out of 

the four prediction model experiments with date range, January 1, 2003 through January 

1, 2004, had prediction accuracies greater than the market baseline accuracy. The next 

chapter concludes the thesis, providing insights into the work and future research 

directions. 
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Chapter 5 Conclusions and Future Work 

 This thesis presents a profitable stock trading strategy by combining a temporal 

data mining based stock selection approach with portfolio optimization techniques. The 

background information for these techniques are found in Chapter 2. The combined 

method and trading strategy details are discussed in Chapter 3. Research conclusions 

include comparisons and discussions of results, presented in Chapter 4, to provide an 

insight and a summary of the research. Future work recommendations, to continue 

progress made by this thesis, are provided at the end of this chapter.  

5.1 Research Conclusions  

 The combined Time Series Data Mining Portfolio Optimization model was able to 

overcome transaction cost and outperform the market benchmark returns in all prediction 

steps for two time periods spanning from January 1, 2002 to January 1, 2003 and from 

January 1, 2003 to January 1, 2004. The prediction model is capable of looking further 

ahead and making predictions that are further out than one-step and achieve desired 

results. This predictive ability allows investors to make longer-term decisions and 

possibly avoid additional transaction cost due to fewer transactions. The success of the 

multi-step approach shows the stock selection model’s predictive ability to select stocks 

with positive returns over various prediction horizons.  

In further evaluating the TSDM stock selection method, model prediction 

accuracies also demonstrated that the stock selection method has predictive ability. 

Prediction accuracy results show that the model prediction accuracy was lower in year 

2002 experiments than in year 2003 experiments. The model had higher prediction 

accuracy than the market baseline in four out of eight total experiments, with three of 
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those accuracy measurements coming in year 2003 experiments, which experienced 

favorable market conditions. The stock selection model has the capability to work better 

in good market conditions, while still achieving desired return performance in both good 

and bad overall market conditions. 

When considering prediction accuracy as a part of portfolio risk, due to an 

investor’s ability to make positive or negative portfolio stock selections, the model 

assumed more risk in the year 2002 experiments than it did in the year 2003 experiments, 

due to the lower accuracy levels. Year 2002 experiments averaged 43.5% accuracy and 

year 2003 averaged 55.7% accuracy. The year 2002 had overall bad market conditions. 

These market conditions forced the combined model to take on more portfolio risk to 

achieve positive returns in Chapter 4. The model also took on more risk, in a traditional 

sense, shown by the portfolio beta values. The model average beta risk values were at 

least two times greater (2.58 and 2.10) than the market beta, which has a beta value of 1. 

The model beta values show that generated portfolios on average have a higher risk level 

than the overall market. This risk is mainly due to a lack of diversification in weekly 

portfolios. The generated model portfolios have fewer stocks in them than the number of 

stocks in the overall benchmark index.  

The returns of the initial stock portfolios are improved using the portfolio 

optimization techniques discussed in Section 3.2. The process of rebalancing the portfolio 

weights to achieve better risk vs. return characteristics also contributes to the overall 

model return. The optimal portfolios constructed have better risk vs. return characteristics 

than portfolios that are not optimized with the same set of assets. This has been 

demonstrated both in theory and now in practice using the Time Series Data Mining 
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Portfolio Optimization trading strategy. As stated in Chapter 4, returns are calculated 

based on a $100,000 portfolio value with an adjustment for the transaction cost associated 

with the weekly trading strategy. Transaction cost will have more of an effect on the 

overall portfolio return if the initial weekly portfolio value is lower than $100,000 and 

less of an effect if the initial weekly portfolio value is higher than $100,000. Due to 

higher portfolio values, more shares of each stock can be purchased and added to a 

portfolio producing higher overall returns. 

The combined TSDMPO model achieved all previously stated goals including 

outperforming the overall market in bull (good) and bear (bad) market conditions. This 

trading strategy can now be used to trade in an actual market setting using all widely 

available and frequently traded stocks with sufficient data resources. Using the TSDMPO 

trading strategy on a weekly basis helps overcome transaction cost associated with 

trading and allows an investor to realize profits over a given time range. The results 

presented here are for a one-year time period, but could be extended for longer time 

periods to obtain similar results due to the adaptive nature of the stock selection method. 

The next section discusses future work to continue the research presented in this thesis. 

5.2 Future Work 

Future work lies in the area of extending the predictive capabilities of the Time 

Series Data Mining stock selection method, incorporating short selling strategies, and 

investigating options data sets. The TSDM stock selection method could be extended to 

use multiple predictive structures with various lengths. These multiple predictive 

structures with various lengths will require higher embedding dimensions to capture 

temporal patterns in the reconstructed phase space.  
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The use of options data should also be considered in trying to make predictions 

and developing trading strategies. Using the actual options price data or the underlying 

option strike price data are two possible data sets that could be used to make stock 

selections from. Also return performance could be calculated using either the underlying 

stock price of the option or the actual option prices. 

The current work focuses on a long trading strategy. Trading long is exactly like 

the trading performed in this thesis, in which a stock is bought and held to be sold later at 

a higher price. Short selling is the selling of a security that an investor does not currently 

own, and the transaction is completed by the purchase and delivery of a security 

borrowed by the seller [5]. A short selling strategy profits from being able to buy the 

stock at a lower price than the price at which they sold short. Incorporating a short selling 

strategy should be investigated to see if changing the model objective can achieve results 

that are similar those reported in this research.  
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Appendix 

A.1 Dow Jones 30 Market Index Stock Listings (as of 1/01/2004) 

Alcoa - AA  

American Express - AXP  

AT&T - T  

Boeing - BA  

Caterpillar - CAT  

Coca-Cola - KO  

Citigroup - C  

Disney - DIS  

DuPont - DD  

Eastman Kodak - EK  

Exxon Mobil - XOM  

General Electric - GE  

General Motors - GM  

Hewlett-Packard - HWP  

Home Depot - HD  

Honeywell - HON  

IBM - IBM  

Intel - INTC  

International Paper - IP  

Johnson & Johnson - JNJ  
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McDonald's - MCD  

Merck - MRK  

Microsoft - MSFT  

3M - MMM  

JP Morgan - JPM  

Philip Morris - MO  

Proctor & Gamble - PG  

SBC Communications - SBC  

United Tech - UTX  

Wal-Mart - WMT  
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