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Abstract 
 
This paper1 presents a discriminating approach to 
detecting the existence of underlying determinism in 
speech phonemes using the surrogate data method. 
The discrimination is made using a statistical 
measurement of neighboring trajectory directions. This 
approach is experimentally verified with both 
deterministic and stochastic time series and then 
applied to speech phonemes from the TIMIT database. 
The results show that vowels present some degree of 
determinism, while no evidence is observed showing 
that determinism exists with either voiced or unvoiced 
fricatives. 
 

1. Introduction 
 
Recently suggestions that speech production may be a 
nonlinear process [1] have produced great interest in 
applying nonlinear analysis to speech production 
modeling. A number of studies have been conducted 
to seek evidence of the possible underlying chaotic 
features in speech phonemes [2-6]. The most 
commonly used identification method is to calculate 
the Lyapunov exponent and correlation dimension, 
which are invariants of a chaotic system. However, the 
numerical estimation of Lyapunov exponents can be 
problematic in the presence of noise [3]. Furthermore, 
for short data sets, which are generally the case for 
speech phoneme analysis, the computation of 
Lyapunov exponents can be difficult. If there are not 
enough data points in the phase space, increasing the 
size of the nearest neighborhood can create an 
erroneous expansion rate. Unfortunately, calculating 
the correlation dimension, the other invariant, may 
also be misleading as it is susceptible to false positive 
results [7]. Thus, studies based on numerically 
evaluating these two invariants have provided 
evidence that both support and reject the existence of 
chaos in speech [2-4]. 
 
This paper presents a discriminating approach to 
detecting the existence of determinism in speech 
phonemes using the surrogate data method [8]. The 
implemented discriminating approach is to measure 
the flow direction of neighboring trajectories within a 
local subspace in a phase space. The basic notion is 

that if trajectories are generated by deterministic 
equations, then the determinism will cause identical 
present states (or the neighboring trajectories) to 
evolve similarly in the near future (the ‘analogues’ in 
Lorenz [9]). This similarity can be reflected by 
detecting the underlying structure of the average 
difference of the one-step flow direction between 
neighboring trajectories. The basic idea is that if a time 
series has some degree of determinism, then the 
detected structure would be different to that of its 
corresponding surrogates. However, if a time series 
comes from a stochastic process, then it is unlikely to 
present such a phenomenon. 

                                                 
1 This material is based upon work supported by the 
National Science Foundation under Grant No. IIS-0113508. 

 
A similar idea of measuring parallel trajectories was 
first proposed in [10]; however, the underlying 
algorithm details were not made available. In our 
approach, improvements to trajectory parallel measure 
are made in two aspects. Firstly, to locate the nearest 
trajectory segments to a query point, an algorithm of 
finding the nearest trajectories is used, instead of using 
the nearest neighbor algorithm (NNA). Using the 
NNA can be problematic, because it is highly possible 
for the NNA to wrongly locate multiple trajectory 
segments on a single trajectory instead of finding just 
one nearest segment on each of the nearest trajectories. 
The paradigm of finding the nearest trajectory is 
shown in Figure 1. The algorithm of finding the 
neighboring trajectories was first proposed in [11]. It 
can be realized by modifying the existing nearest 
neighbor algorithm. Secondly, in our approach, the 
importance of choosing a proper embedding delay is 
highlighted. The accuracy of this approach will be 
degraded if the time series is over-sampled from a 
system and the embedding delay is not large enough to 
show the dynamics [12], because in such a situation, 
the neighboring trajectories will evolve similarly even 
for a time series from a stochastic system.  
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Figure 1. The trajectories 1, 2, 4, and 5 are the four nearest 
trajectories to the query point. The nearest trajectory algorithm finds 
only the nearest point, shown as a triangle, on each neighboring 
trajectory. The rest of dot points on each trajectory are eliminated 
even though they may be closer to the query point than the triangles. 

 



2. Trajectory Direction Measurement (TDM) 
 
The approach to measuring the direction difference 
between two neighboring trajectories is given in 
equation (1), which describes the direction difference 
between two vectors in an arbitrary dimension 
coordinate system. 
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in which, a  is the inner product of vector a and b, 
which is given by (2) in a phase space. 
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nx  is the query point and ny is the nearest point on 
one of the nearest trajectories. 1+nx  and 1+ny  are the 
next points of nx  and ny in the phase space. 
 
The trajectory direction measurement (TDM) is 
calculated for a variety of embedding dimension. A 
number of K  local subspaces are randomly selected 
for each embedding dimension. The TDM value of 
that embedding dimension is calculated by: 
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where  is the query trajectory segment of the  
subspace and N

ib thi
T  is the number of nearest trajectories 

selected.  
 
The TDM has values from 0 to 1. A TDM value of 0 
means neighboring trajectories in subspaces almost 
follow the same direction; 0.5 indicates the 
neighboring trajectories are statistically orthogonal 
with the query trajectory, and 1 indicates the 
trajectories in subspaces are evolving towards the 
opposite direction of the query trajectory.  
 
The calculated TDM value serves as a discriminating 
approach for the method of surrogate data [8,13]. The 
method of surrogate data generates an ensemble of 
surrogate data sets, which mimic the original data set 
by sharing given properties of the observed time series 
(such as mean, variance, and power spectrum) while 
remaining consistent with the null hypothesis.  A 
hierarchy of null hypotheses was proposed in [8].  
 
Of the particular interest the hypothesis we seek to 
reject is that the signal comes from a linear stochastic 
process. Under this hypothesis, there are two 
algorithms of generating surrogate data, Fourier 
transform (FT) and AR modeling. The FT is selected 
in our experiment simply because it is a constrained 

realization and numerically more stable than AR 
modeling [8]. This is particularly important when the 
time series is short because the misestimated 
coefficients of the AR model will cause the error to 
diverge when iterating the equation. 
 

3. Experiment with Chaotic and AR Models. 
 
To test the validity of the TDM method, experiments 
are conducted with time series generated from typical 
chaotic systems and second-order stochastic systems 
 
3.1 TDM Experiment with Lorenz System 
The Lorenz model is defined in (4). The three 
parameters are configured as typical values. 
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A time series of a total 10000 data points is generated 
with initial values x (1) = 1, y (1) =2, z (1) = 11.005 
and 01.0=∆t  by the fouth-order Runge-Kutta 
method. The first 2000 data points are discarded to 
remove transient trajectories. The parameters for the 
experiments are: 3-10, embedding dimension; 1, time 
delay; 6, number of surrogate; 4, number of nearest 
trajectories; 500, number of randomly selected query 
point. 
 
Figure 2 shows the TDM experiment results with the 
attractor and power density spectrum of both the 
original time series x(t) and one of its surrogates. The 
surrogates have the same power spectrum density with 
the original time series since the FT is a constrained 
realization as described in [13]. 

 
 

 
 

 
Figure 2. TDM experiment for X variable of Lorenz system 

 



In the Figure 2, the TDM values of six surrogate data 
sets are clearly distinguishable from the original time 
series at all embedding dimensions. The underlying 
structure of one-step flow direction of the original time 
series does not exist any more with its surrogates. In 
other words, the information conveyed by determinism 
in the original time series is destroyed by surrogating 
the data. Hence, the result clearly suggests that the null 
hypothesis be rejected. 
 
3.2 TDM Experiment with Logistic Map 
Another experiment is conducted with the well-known 
chaotic map, the logistic map, given by (5). 
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The logistic map produces a random-like chaotic time 
series when the coefficient k is greater than 3.57. In 
this test, k is set to 4. By iterating (5), a time series 
with 8000 data points is generated. TDM is calculated 
for embedding dimensions 2 through 10. Other 
experiment parameters are configured in the same 
manner as that of the Lorenz test. The TDM 
experiment results are presented in Figure 3 with the 
attractor pictures of both original time series and one 
of the surrogates. 
 
Again in this test, the great difference of the TDM 
value between the original time series and the 6 
surrogate data sets at all embedding dimensions 
correctly suggests the null hypothesis that the time 
series comes from a linear stochastic process be 
rejected. 

 

 
 

 Figure 3. TDM experiments for logistic map 
 

3.3 TDM Experiment with Stochastic Signals 
One of our interests is to check whether the TDM 
method will make a false positive error or not, which 
means a test rejects the null hypothesis when the null 
hypothesis is in fact true. Control experiments are 

conducted with two time series generated from an AR 
process and a Gaussian white noise generator. The 
transfer function of AR model is given by: 
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The experiment parameters are configured as the same 
with the logistic map test, and the results with 
Gaussian white noise and AR process are shown in 
Figure 4 and Figure 5, respectively. 
 
For both cases, the TDM curve of the original time 
series is totally mixed with that of surrogates at all the 
embedding dimensions. This again implies that there 
is no determinism in the original time series that 
makes the structure of one-step flow direction 
different to that of its surrogates. Both the original 
time series and the surrogates share the same 
characteristic in this aspect. Hence the null hypothesis 
that the time series comes from a linear stochastic 
process is accepted correctly. 
 

 

 
 

Figure 4. TDM experiments for Gaussian white noise 
 

 

 
Figure 5. TDM experiments for a time series from an AR model 

 



4. Experiment with Speech Phonemes. 
 
The validity of the TDM method is well founded by 
the previous experiments. In this section, experiments 
are conducted to detect the evidence of determinism in 
English speech phonemes. Voiced and unvoiced 
phonemes, vowels and fricatives, are randomly 
selected from the TIMIT database.  
 
To find a proper embedding delay, the average mutual 
information is calculated for each selected phoneme 
[12]. Figure 6 shows the result of average mutual 
information for selected 4 vowels /ao/, /er/, /ow/ and 
/ay/.  The first minimum of the mutual information can 
be found at about six for these four phonemes.  
 

 
Figure 6. Average mutual information vs. time lag 

 
The FT surrogates of each of the vowels are generated 
to firstly have a visual inspection of how different they 
are in the phase space. Interesting differences can be 
observed from Figure 7 with the original attractors 
(left column) and one of the surrogates (right column). 
 
The parameters for the experiments are defined as 
follows: 3-20, embedding dimension; 6, time delay; 
12, number of surrogate; 4, number of neighboring 
trajectories; 400, randomly selected query points. The 
TDM experiment results are shown in Figure 8. 

 

 

 

 

Figure 7. Phase space of four vowels (left) and one of their 
corresponding surrogate sets (right) 

 
 

 
 

 

 



 
 

Figure 8. TDM experiments for four vowels 
 
For each of the selected vowels, the curve of the TDM 
value is clearly distinguishable from its corresponding 
12 surrogates. This indicates an existence of 
determinism in those selected vowels, suggesting a 
potential application of nonlinear local prediction with 
vowels for speech processing. Actually this result is 
also consistent with the fact that each of vowels has a 
distinct structure in the reconstructed phase space. 
 
Again, the same procedure is conducted for the 
experiments with one unvoiced fricatives /s/ and one 
voiced fricative /z/. The experiment results are shown 
in Figure 9 with the attractors of original one (left 
column) and one of the surrogates (right column). 
 

  
 

   
 

 

 
 

Figure 9. TDM experiments for fricative /s/ and /z/  
 
The mixture of TDM values of the fricative time series 
and its surrogates indicates that there is no evidence 
showing an existence of determinism in either voiced 
or unvoiced fricative example. This suggests that these 
two fricatives are generated from a stochastic process 
and no chaos exists in the fricative phoneme 
production, although it produces a random-like time 
series.   
 

5. Discussions and Conclusions 
 
This paper presents how to detect determinism in a 
time series by a statistical direction measurement of 
neighboring trajectories. Determinism is detected by 
identifying whether the TDM value of the original 
time series is significantly different with that of its 
surrogates. It should be mentioned that evolvement 
analogue of neighboring trajectories in a deterministic 
time series actually is a cornerstone of nonlinear local 
predication [11,14], in which prediction is given by 
averaging or linearly fitting the coordinate of nearest 
neighbors. The TDM approach interprets this analogue 
by a statistical measurement of one-step flow direction 
of neighboring trajectories. The local linear prediction 
error can also be used as a discriminating approach for 
the surrogate data method for determinism detection 
[8]. However, the TDM approach has the advantage of 
providing a picture of the flow structure of 
neighboring trajectories in the phase space.  
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