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Abstract 

A new metric that quantifies the predictability of a time series is introduced. This 

new time series predictability metric is developed based on the η -metric method 

introduced by Kaboudan, but overcomes the resolution and stationarity problems 

presented in the pure η -metric method. It also provides a new feature, which shows how 

the predictability changes over different subsequences in a time series. The new metric 

can be built on top of many time series modeling methods and improves their 

performance in time series forecasting. Successful attempts have been made with Genetic 

Programming (GP) and Artificial Neural Networks (ANN) in the application of stock 

time series prediction.  
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Chapter 1 Introduction 

1.1 Motivation 

In general, time series predictability is a measure of how well future values of a time 

series can be forecasted, where a time series is a sequence of observations 

. Time series predictability indicates to what extent the past can be 

used to determine the future in a time series. A time series generated by a deterministic 

linear process has high predictability, and its future values can be forecasted very well 

from the past values. A time series generated by an uncorrelated process has low 

predictability, and its past values provide only a statistical characterization of the future 

values.  

} ,  ,2 ,1,{ Ntyt …=

In practice, a given time series is not simply deterministic or stochastic, but rather 

some combination of both. Predictability can be viewed as the signal strength of the 

deterministic component of the time series to the whole time series. In this study, the 

deterministic component is estimated by a given modeling method, whereas the 

stochastic component is estimated by the corresponding residuals. Thus, the time series 

predictability under a particular modeling method can be measured.  

Measuring the predictability of a time series is useful because it can make a 

prediction of the model accuracy and thus tell whether a time series can be predicted 

under this particular model. Therefore prediction of a time series with low predictability, 

such as a random walk time series, can be avoided. For a low predictability time series, 

past observations are of little use in predicting future values, and the future values are 

determined randomly or by unknown factors. An accurate metric of time series 

predictability provides a measure of confidence in the accuracy of a prediction. 
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 There have been numerous publications in the area of nonlinear time series modeling 

and prediction [1-5] over the last ten years, but few have studied the predictability of a 

time series [6]. This thesis presents a new time series predictability metric for use with 

nonlinear time series modeling techniques. This new metric will be shown to have better 

characteristics than existing metrics. Use of the metric in conjunction with a time series 

modeling method in financial modeling applications will show significant performance 

improvement in comparison to using the time series modeling method alone.  

1.2 Problem Statement 

Time series analysis builds models that describe the underlying system that generates 

a time series. Some approaches to time series analysis include Autoregressive Integrated 

Moving Average (ARIMA) or Box-Jenkins time series analysis, artificial neural 

networks (ANN), and genetic programming (GP). The focus of this research is to 

develop quantitative metrics that characterize time series according to their ability to be 

modeled by a particular method, such as the predictability of a time series using the GP 

approach or an ANN. Time series predictability provides a measure of how well a time 

series can be modeled by a particular modeling method, or how well a prediction can be 

made by this modeling method. Particularly, if time series A has higher predictability 

than time series B, the predictions made on A should have smaller errors than the 

predictions made on B on average.  

In financial applications, knowing the predictability facilitates risk minimization and 

return maximization for investment decisions. The major application of the developed 

time series predictability metrics in this thesis will be to address the problem of choosing 

stocks in which to invest. This stock selection application provides a good example of 
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the use of time series predictability metric. Assuming an investment goal of maximizing 

return, while keeping the risk as low as possible, the objective is to identify stocks that 

are more predictable for a given modeling method. This can be done by evaluating the 

predictability value for each member of a set of financial time series, and ranking them 

according to their predictability value. Trading on higher ranked (higher predictability 

value) financial time series is expected to have better return/risk performance since the 

predictions made on these time series are on average more accurate.  

1.3  Thesis Outline 

The thesis is divided into seven chapters. Chapter 2 reviews the background 

information underlying this research including general concepts of time series analysis 

and data mining, several time series modeling techniques, and previous work about time 

series predictability.  

Chapter 3 presents the definition of the new time series predictability metric and the 

methods used for estimating it. Chapter 4 applies the new metric to several sample time 

series to show the characteristics of the metric.  

In Chapter 5, the experimental results from analyzing stock market open price 

changes using both genetic programming and artificial neural networks are given. 

Chapter 6 discusses two other alternative modeling approaches. The last chapter 

summarizes the thesis and discusses future work.  
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Chapter 2 Historical Review 

This chapter reviews the foundation of time series predictability research, which 

includes the basic concepts of time series analysis [7], linear [7] and nonlinear time 

series modeling methods [8, 9], and the previous approach of time series predictability 

[4].  

The first task of time series forecasting is to select an appropriate modeling technique. 

This selection may be application dependent. According to the No Free Lunch (NFL) 

theorems [10], there is no search algorithm that can outperform all other search 

algorithms over all possible search problems, however, a particular algorithms may be 

better suited for a particular problem domain. Kaboudan reported that genetic 

programming (GP) showed an equivalent or better performance in predicting stock price 

time series [4, 6] than other modeling methods. Other methods such as artificial neural 

networks (ANN) are also recognized as effective modeling methods in the problem of 

financial market forecasting [11]. However the main contribution of this thesis is an 

extension of these methods. The results presented by other authors using these methods 

are verified in this thesis. A good modeling method helps achieve the first investment 

goal, maximizing the expect return.  

The other investment goal, reducing the risk, is what time series predictability is 

applicable to. There are hundreds of different stocks that can be traded in the stock 

market. To reduce the risk, one needs to identify those stocks with low levels of 

unpredictable variations, i.e., with high level of predictability. A good metric of time 

series predictability would make this work straightforward - simply evaluate the 
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predictability for each stock time series and select those with highest predictability 

metric values.   

By design, the computed metric should approach zero for a complex signal that is 

badly distorted by noise. Alternatively, the computed metric should approach one for a 

time series with low complexity and strongly deterministic signal. An η -metric, which 

follows the above design objective, was introduced by Kaboudan [6]. Kaboudan’s η -

metric measures the level of GP-predictability of a time series. A review of this metric is 

given in the next chapter.  

The goal of this research is to investigate new time series predictability metric with 

better behavior than Kaboudan’s (see section 2.5 and 3.1) so that it can be applied to the 

real world applications. This will be an original contribution to the field of time series 

analysis and data mining. This thesis provides an explicit measure of time series 

predictability. Based on this predictability metric, it proposes new thoughts in using the 

forecasting results more effectively and thereby improving the efficiency of real world 

applications.   

2.1 ARIMA Time Series Analysis 

Traditional time series analysis techniques such as the Box-Jenkins [12] or 

Autoregressive Integrated Moving Average (ARIMA) [7] method have been well 

developed and widely used in the area of time series modeling. However, the ARIMA 

method is limited by the requirement of stationarity of the time series. The statistical 

characteristics of a stationary time series remain constant though time. Additionally, the 

residuals, the differences between the time series and the ARIMA model, are 

independent and normally distributed.  
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The general Box-Jenkins or ARIMA model of order (p, P, q, Q) is 

t
L

Qqt
L

Pp aBBzBB )()()()( θθδφφ += . 

Here 

�  and is called the nonseasonal 

autoregressive operator of order p. 

)1()( 2
21

p
pp BBBB φφφφ −−−−= "

�  and is called the seasonal 

autoregressive operator of order P. 

)1()( ,
2

,2,1
PL

LP
L

L
L

L
L

P BBBB φφφφ −−−−= "

�  and is called the nonseasonal moving 

average operator of order q. 

)1()( 2
21

q
qq BBBB θθθθ −−−−= "

�  and is called the seasonal 

moving average  operator of order Q. 

)1()( ,
2

,2,1
QL

LQ
L

L
L

L
L

Q BBBB θθθθ −−−−= "

�  is a constant term, where )()( L
Pp BB φµφδ = µ  is the true mean of the 

stationary time series being modeled.  

� pφφφ ,,, 21 " ; LPLL ,,2,1 ,,, φφφ " ; qθθθ ,,, 21 " ; LQLL ,,2,1 ,,, θθθ " ; and δ  are 

unknown parameters that must be estimated from sample data. 

�  are random shocks that are assumed to be statistically independent of 

each other; each is assumed to have been randomly selected from a normal 

distribution that has mean zero and a variance that is the same for each and every 

time period t. 

",, 1−tt aa

� The symbol B is called the backshift operator. It shifts the subscript of a time 

series observation backward in time. That is, 1−= tt yBy , and  ktt
k yyB −=
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Bowerman [7] suggests three steps to identify the particular form of the ARIMA 

model that describes a particular stationary time series { }tZ .  

1. Whether the constant term δ  should be included in the model. 

2. Which of the operators )(Bpφ , , )( L
P Bφ )(Bqθ , and  should be included 

in the model.  

)( L
Q Bθ

3. The order of each operator that is included in the model.  

Assuming that all observations in the time series are normally distributed, the δ  

should be included if 

2
/

>
ZZ

Z

Nσ
µ

, 

where Zµ  is the mean of the time series, Zσ  is the standard deviation of the time series, 

and  is the number of time series observations. Two statistical functions, the sample 

autocorrelation function (SAC) and sample partial autocorrelation function (SPAC), are 

used in step 2 and 3. The detailed procedures are included in [7].  

ZN

2.2 Genetic Programming (GP) 

Artificial evolutionary processes, such as genetic algorithms (GA) [13], adapt 

concepts from evolutionary biology to fields of engineering, optimization, and machine 

learning. These concepts include reproduction, recombination, mutation, survival of the 

fittest, and populations. Such algorithms evolve populations of candidate solutions to a 

problem with the goal of finding near optimal candidates. Koza [14] extended this 

genetic model of learning into the space of programs and thus introduced the concept of 

genetic programming (GP). Each candidate solution in the search space is represented by 

a genetic program. Genetic programming is now widely recognized as an effective 
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search paradigm in artificial intelligence, databases, classification, robotics and many 

other areas [2, 4, 14-17].  

Genetic programming lets a computer learn programs by itself. The top-level process 

of genetic programming follows a similar evolutionary approach as a genetic algorithm. 

The major difference between genetic programming and genetic algorithms is that a 

genetic program’s structures are not encoded as linear genomes, but as terms or simple 

symbolic expressions. The units being mutated and recombined do not consist of 

characters or command sequences but of functional modules, which can be represented 

as tree-structured chromosomes.  

2.2.1 Basic Evolutionary Algorithm 

1. Generate initial population. 

2. Evaluate fitness for each individual in the population. 

3. Selection.  

4. If solution is sufficient, end the process and present the best individual in the 

population as the output from the algorithm.  

5. Do variations by mutation, crossover and other genetic operators on the 

selected individuals.  

6. Form the new population using the result of the genetic operations. 

7. Go to step 2.  

The flowchart of this process is shown below in Figure 2.1.  
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Figure 2.1: Flowchart of evolutionary algorithm 

2.2.2 Simple Description of Genetic Programming 

GP represents a problem as the set of all possible computer programs or a subset 

thereof that are less than a designated length. It maintains a population of solutions and 

evolves it. It uses crossover and mutation as the transformation operators to change 

candidate solutions into new candidate solutions. A user-defined fitness function is used 

to select and keep better candidate solutions in the population. GP typically is 

implemented as a form of supervised machine learning. 

2.2.3 GP Fundamentals 

2.2.3.1 Terminals and Functions 

The terminal set is comprised of the inputs to the GP program, the variable and 

constants supplied to the GP program. The function set is composed of the statements, 

operators, and functions available to the GP system. A simple example of function set 

and terminal set is as follows.  



Chapter 2 Historical Review  

  

10

Function set: {+, - ,*, /, sin, cos, exp},  

Terminal set: {a, b, 1}. 

2.2.3.2 GP’s Tree Structure 

The tree structure is the most frequently used representation in GP. The nodes of the 

tree are selected from the function set while the leaves are from the terminal set. Each 

GP tree represents a single individual (genotype) in the population. See Figure 2.2 for an 

example. The genetic program (phenotype) represented by this tree is  

)(*)/)(( edcba ++ . 

 

 *

 

 

 

 

/ +

+ c

a

d e

b

Figure 2.2: Example of a simple GP tree 

2.2.3.3 Genetic Operators 

Crossover: combines the genetic material of two parents by swapping a part of one 

parent with a part of the other. An example of the crossover operation is shown in Figure 

2.3.  
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2.2.4 Previous Work of GP in Time Series Predictability 

 Fogel and Fogel [3] added noise to data generated by the Lorenz system and the 

logistic system. Using GP and Akaike’s information criterion (AIC) [18], they found that 

signals with no noise are more predictable (measured by average prediction error) than 

noisy ones. Their results suggest the potential for evolving models of chaotic data, even 

in background noise. Evolutionary programming can be used to optimize parameter 

estimates associated with models of chaotic time series in light of observed data. 

Kaboudan [4] applied GP to estimate the predictability of stock price time series. He 

tried to find the best-fit model for a time series using GP by minimizing the sum of 

squared error (SSE). His predictability metric was defined based on comparing the SSE 

between the original time series and its reshuffled version. Kaboudan’s η -metric is the 

only clearly defined predictability metric found in the literature. This research extends 

his metric and applies the newly developed metric to a set of financial time series 

experiments.  

The advantages of GP include its ability to evolve arbitrarily complex equations 

without requiring a model with an a priori structure, and the flexibility in selecting the 

terminal set and function set to fit different kind of problems.  

2.3 Fast Evolutionary Programming (FEP) and Reduced Parameter Bilinear 

Model (RPBL) 

Rao and Chellapilla [19] proposed an alternative modeling approach called fast 

evolutionary programming (FEP) [20] to optimize the parameters of a reduced parameter 

bilinear model (RPBL). The RPBL approach [21] is capable of effectively modeling 

nonlinear time series with fewer parameters than a conventional bilinear model. FEP, 
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which can be used to determine RPBL model structure, is shown here in this thesis to 

have reasonable optimization performance. FEP evolves RPBL models with lower 

normalized mean squared error (NMSE) and also lower model order than evolved with 

conventional evolutionary programming [19, 22]. This approach will be shown to have 

less computational cost and less model complexity when compared with GP.  

2.3.1 Fast Evolutionary Programming 

Fast evolutionary programming (FEP) is a variation of evolution strategies (ES) [23]. 

FEP should not be confused with Fogel’s evolutionary programming [24], which evolves 

finite state machines. Yao and Liu [20] have shown empirically that FEP, which uses a 

Cauchy mutation operator, has better convergence properties than ES, which uses a 

Gaussian mutation operator. This was demonstrated on several multimodal functions 

with many local minima. Further it is comparable to ES in performance for unimodal and 

multimodal functions with only a few local minima.  

FEP is implemented as follows [20], using an )( λµ +  evolution strategy.  

1. Generate the initial population of µ  randomly selected individuals, and set the 

generation number, k to one. Each individual is taken as a pair of real-valued 

vectors , ),( ii ηx µ,,1…=i , where  includes the values of the solution vector 

elements and  includes the mutation parameter values. Typically the elements 

of  are selected randomly following a uniform distribution over the search 

space. 

ix

iη

ix

2. Evaluate the error score for each individual, in terms of the objective function, 

. )( ixf

3. Mutate each parent (  to create a single offspring (  by ), ii ηx ), iηxi ′′



Chapter 2 Historical Review  

  

14

)]1,0()1,0(exp[)()(
)1,0()()()(

jii

iii

NNjj
Cjjxjx

ττηη
η

+′=′
+=′

 

for , where , nj ,,1"= )( jxi )( jxi′ , )( jiη  and )( jiη′  denote the j-th component of 

the vectors , ,  and ix ix′ iη iη′ , respectively.  is a normally distributed one-

dimensional random variable with mean zero and standard deviation one. C  is a 

random variable satisfying the standard Cauchy distribution. The probability density 

function for C  is 

)1,0(N

)1,0(

), st(
)2)/ s)((

1
tx −1(s +π

)(xf = , where t is the median of the 

distribution. The mean and the standard deviation of the Cauchy distribution are 

undefined.  indicates that the random variable is generated for each value of j. 

The factors 

)1,0(jN

τ  and τ ′  are commonly set to be 
1−



n2


  and (  [25]. ) 1

2
−

n

4. Calculate the fitness of each offspring. 

5. Conduct pairwise comparison over the union of parents and offspring. For each 

individual, q opponents are chosen randomly from all the parents and offspring 

with equal probability. For each comparison, if the individual’s error is no greater 

than the opponent’s, the individual receives a “win”. 

6. Select the µ  individuals that have the most wins to be parents of the next 

generation.  

7. Stop if the halting criterion is satisfied; otherwise, increment the generation 

number and go to Step 3. 

2.3.2 Reduced Parameter Bilinear Model 

The reduced parameter bilinear model (RPBL) [21] is defined as  
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where {  is the sequence of time series observations, {  is a sequence of 

independent random variables having a  distribution,  

}tz }ta

)1,0(N
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"

The variables pφφφ ,,, 21 " ; qθθθ ,,, 21 " ; mξξξ ,,, 21 " ; and kζζζ ,,, 21 "

ktt
k yyB −=

 are unknown 

parameters to be estimated from the time series data. The backshift operator B shifts the 

subscript of a time series observation backward in time, that is, . As can be 

seen, the autoregressive moving average (ARMA) model is a special case of the bilinear 

model where iξ  and 0=iζ  for all i. 

The RPBL model is evolved by FEP using the following configuration. The 

individual vectors of the population used in FEP consist of the model orders followed by 

the model parameters, as given by }]{},{},{},{,,,,[ jjjji kmqpx ζξθφ= . In the initial 

population, p, q, m, and k parameters were selected randomly from {  and the 

model coefficients were selected uniformly from [-1, 1].  

}20,",2,1

2.3.3 Model Identification for FEP 

The identification procedure consists of determining the orders p, q, m and k of the 

model and estimating the corresponding parameters. The model order is determined as 

the order that minimizes the Minimum Description Length (MDL) criterion defined as 

[19] 
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1()log()( 2 +− eN σγ number of independent parameters) log( )γ−N , 

where N is the number of observations of the time-series, ),,,max( kmqp=γ  and  

∑
+=

−
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
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N 1

22 )ˆ(1
γγ
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The predicted output  at time t is obtained using the model with order ( . This 

criterion tries to minimize both model order and squared error at the same time. Using 

FEP, the model order is estimated following Rao and Chellapilla’s method [19]: Each 

individual in the population is a vector of the model order followed by the model 

parameters. In each generation, the model orders and model parameters are perturbed 

with continuous Cauchy random numbers. The model orders are then rounded to the 

nearest integer to obtain the new model orders. The model orders and parameters are 

selected according to the MDL fitness criterion. The best vector in the final generation 

contains the desired model order and the model parameters. 

tẑ ),,, kmqp

2.4 Time Series Data Mining (TSDM) Method 

Povinelli introduced a new framework for analyzing time series data called Time 

Series Data Mining (TSDM) [5, 26, 27]. This framework adapts and innovates data 

mining concepts to analyzing time series data. It creates a set of methods that reveal 

hidden temporal patterns that are characteristic and predictive of time series events. 

Unlike traditional time series analysis methods which attempt to characterize and predict 

all time series observations, TSDM methods focus on characterizing and predicting 

events, and therefore overcome the limitations of requiring stationarity of the time series 

and normality and independence of the residuals. The possibility of combining this 

method with the predictability metric will be discussed in Chapter 6. 
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2.4.1 Key Concepts in Time Series Data Mining 

An event is defined as an important occurrence in time. The associated event 

characterization function , defined a priori, represents the value of future 

“eventness” for the current time index.  

)(tg

Defined as a vector of length Q or equivalently as a point in a Q-dimensional space, a 

temporal pattern is a hidden structure in a time series that is characteristic and predictive 

of events.  

A phase space is a Q-dimensional real metric space into which the time series is 

unfolded. The augmented phase space is defined as a Q+1 dimensional space formed by 

extending the phase space with the additional dimension of )(⋅g . 

The objective function represents a value of fitness of a temporal pattern cluster or a 

collection of temporal pattern clusters. Finding optimal temporal pattern clusters that 

characterize and predict events is the key of the TSDM framework [5].  

2.4.2 Time Series Data Mining Method 

The first step in applying the TSDM method is to define the TSDM goal, which is 

specific to each application, but may be stated generally as follows. Given an observed 

time series, the goal is to find hidden temporal patterns that are characteristic of events in 

the time series, where events are specified in the context of the TSDM goal. 

Given a TSDM goal, an observed time series to be characterized, and a testing time 

series to be predicted, the steps in the TSDM method are:  

1. Training Stage 

1) Frame the TSDM goal in terms of the event characterization function, 

objective function, and optimization formulation.  
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a. Define the event characterization function g. 

b. Define the objective function f.  

c. Define the optimization formulation, including the independent 

variables over which the value of the objective function will be 

optimized and the constraints on the objective function.  

2) Determine Q, i.e., the dimension of the phase space and the length of the 

temporal pattern.  

3) Transform the observed time series into the phase space using the time-

delayed embedding process. 

4) Associate with each time index in the phase space an eventness 

represented by the event characterization function. Form the augmented 

phase space.  

5) In the augmented phase space, search for the optimal temporal pattern 

cluster, which best characterizes the events.  

6) Evaluate training stage results. Repeat training stage as necessary.  

2. Testing Stage 

1) Embed the testing time series into the phase space. 

2) Use the optimal temporal pattern cluster for predicting events. 

3) Evaluate testing stage results.  

2.4.3 Optimization Method – Genetic Algorithm 

The basic genetic algorithm is adapted to the TSDM framework [5]. These 

adaptations include an initial random search and hashing of fitness values. The adapted 

genetic algorithm is as follows.  
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1. Created an elite population 

1) Randomly generate a large population (n times normal population size) 

2) Calculate fitness 

3) Select the top 1/n of the population to continue 

2. While all fitnesses have not converged 

1) Selection 

2) Crossover 

3) Mutation 

4) Reinsertion 

Initializing the genetic algorithm with the results of a Monte Carlo search has been 

found to help the optimization’s rate of convergence and in finding a good optimum. The 

hashing modification reduces the computation time of the genetic algorithm by 50%. 

2.5 Existing Time Series Predictability metric (η -metric) 

An η -metric was introduced by Kaboudan [6], which measures the probability that a 

time series is GP-predictable. By design, the computed metric should approach zero for a 

complex signal that is badly distorted by noise. Alternatively, the computed metric 

should approach one for a time series with low complexity and strongly deterministic 

signal.  

This metric is based on comparing two outcomes: the best fit model generated from a 

single data set before shuffling with the best fit model from the same set after shuffling. 

The shuffling process is done by randomly re-sequencing an observed data set using 

Efron’s bootstrap method [28]. Figure 2.4 shows an example of the shuffling process.  
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1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

Before shuffling
(Original time series)

After shuffling
(Shuffled time series)

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

Before shuffling
(Original time series)

After shuffling
(Shuffled time series)

 

Figure 2.4: Shuffling a time series 

The 1-step prediction error (measured by the sum of squared error (SSE) between the 

original time series and the modeled time series) before and after shuffling of a time 

series Y , are compared. The 1-step prediction error in },...,2,1,{ Ntyt == Y  before 

shuffling is  

∑
=

−=
N

t
ttY yySSE

1

2)ˆ( , 

where  is the predicted value of . Shuffling increases the 1-step prediction error in tŷ ty

Y . This is  

∑
=

−=
N

t
ttS SSSSE

1

2)ˆ( , 

where  is the shuffled S Y . Define 

S

Y

SSE
SSE

−= 1η . 
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Thus, if time series Y  is a totally deterministic signal and can be modeled perfectly, then 

 and 0=YSSE 1=η . If it is totally unpredictable, the reshuffling shouldn’t affect the 

learned GP model accuracy, hence SY SSESSE =  and 0=η .  

While applying Kaboudan’s η -metric to estimate stock price predictability, two main 

problems have been observed.  

First, the value of the metric depends on the length of the time series. The larger the 

sample size is, the higher the predictability Kaboudan’s metric gives. Specifically, the η  

calculated for a 50-day stock price time series will be much larger than the η  calculated 

from a 20-day stock price time series that is a subsequence of the 50-day series. This is 

inconsistent with prior work [2] that provides evidence that longer stock price time series 

are closer to a random walk than shorter ones. The source of this effect is mainly due to 

the nonstationarity of financial time series, and the nonstationarity becomes more evident 

as the sample size increases. This is because a longer financial time series is more likely 

to have a larger variance, and GP tends to give more “bad predictions” for a shuffled 

time series with larger variance. This way, a longer time series would yield larger  

while the  remains approximately unchanged, and therefore increases 

SSSE

YSSE

S

Y

SSE
SSE

−= 1η . 

The second problem is a derivation of the first one. Since the η  increases when the 

time series is longer, and its value has an upper bound of one, the value of the η -metric 

will be distributed in a very narrow range, especially for a long-term stock price time 

series. Hence, the resolution of the η -metric is reduced. This can be clearly seen by 

examining a long random walk time series, which has an η  close to 0.9 (See Chapter 4). 
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Since the random walk time series are expected to have lower predictability than most 

stock price time series (main experimental data in this research), the η -metric over stock 

price time series will be distributed in the approximate range of [0.9,1.0].  
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Chapter 3 Methods 

As stated in the previous chapter, there are two main problems with Kaboudan’s η -

metric. First, the value of the metric largely depends on the length of the time series. 

Second, for a long-term stock series, the value of the η -metric will be distributed in a 

very narrow range. Hence, the resolution of the metric is limited. These two problems are 

resolved by the new η -metric presented in this chapter.  

3.1 New η -metric 

For a long-term time series  

},,2,1,{ NtyY t "== , 

the η -metric is calculated on the first Q points, that is, a sample series 

},,2,1,{ Qtyt "= . 

Then, the sample series is shifted by τ , and the η -metric is calculated again on the new 

sample 

},,2,1,{ τττ +++= Qtyt " . 

Continuing this process, a series of η ’s is generated, which are the local predictability 

estimations of the subsequences of the time series. Generally,  is defined as the Q
sη η -

metric over the sample 

},1,,2,1,{ ssQsQstyt −+−+−= " . 

Thus, the η -series is represented by  

},,,,,{ 2 "" Q
mQ

Q
Q

Q
Q

Q
Q τττ ηηηη +++ . 
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Since all theη ’s are estimated over same sample size Q, they are comparable, and by 

selecting appropriate values of window length Q, they can be made to distributed in a 

reasonable range. This completely solves the first problem (η  depends on the length of 

time series) and partially solves the second problem (badly scaled and low resolution). 

Additionally, by examining the resulting η -series, the variation of the predictability over 

time can be observed, and the overall predictability of a specific time series can be 

estimated by calculating the average η  over all windows. 

To completely address the second problem, Kaboudan’s definition of η  is examined. 

His definition 

S

Y

SSE
SSE

−= 1η  

uses squared error, which makes the ratio of the prediction error between the original 

time series Y  and the reshuffled version  fall into a narrow range for most financial 

time series. Since the original metric compared squared error, apply the square root 

operator to the error is a reasonable, and as will see later a successful approach. Simply 

modify the definition to  

S

S

Y

SSE
SSE

−=1η  

partially solves the low resolution problem.  

A comparison of the new metric and Kaboudan’s metric is shown in Figure 3.1 and 

Figure 3.2. It can be seen that using Kaboudan’s metric, all of the 30 stocks fall into the 

0.85 to 1 range. This makes the resolution of the metric very low, and it’s hard to 

distinguish a stock price time series with a random walk time series (with predictability 
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value 0.875, see Chapter 4). Using the new metric, all the stocks are distributed in a 

wider range (0.3 – 0.7), and more predictable than a random walk time series (with 

predictability value 0.255, see Chapter 4). 
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Figure 3.1: Distribution of new metric on the 30 DJI stocks 
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Figure 3.2: Distribution of Kaboudan’s metric on the 30 DJI stocks 
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3.2 Combining η -metric with Genetic Programming 

Two different evolutionary approaches, Genetic Programming (GP) and Fast 

Evolutionary Programming (FEP), are considered for use as modeling methods. A 

detailed comparison of these two methods is given in Chapter 6. It shows that GP has a 

better search ability than FEP, especially when dealing with more predictable time series. 

FEP performs better when applied to noisier time series. For real world time series such 

as sunspot series and stock price series, its accuracy performance is similar to GP, but 

with much less computational effort.  

However, in the financial applications, to which the η -metric is applied in this thesis, 

the accuracy performance is of much more concerned than is the time performance, as 

long as the results can be worked out within acceptable amount of time (for example, the 

time between today’s closing and tomorrow’s opening of the market). Therefore, GP is 

considered to be better in this particular application. FEP may be more useful in some 

other applications where the computation time is more important.  

3.2.1 Model 

The forecasting model is a regressive expression that takes the past values in a time 

series as the input and future values as the output. For example, Kaboudan concluded 

that stock prices  are mostly explained by the following ten variables (selected from 

five related time series):  

tp

2112121321 ,,,,,,,,, −−−−−−−−−− tttttttttt djidjivollplphphpppp  

where p is the daily close price, hp and lp are the daily highest and lowest stock prices, 

respectively, vol is the daily traded volume of that stock, dji is the daily Dow Jones 

Industrial Average, and t is the time index.  
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 Following this suggestion, these ten variables are used for GP to evolve the 

forecasting model using 1-step predicting shown in the following equation.  

),,,,,,,,,( 2112121321 −−−−−−−−−−= ttttttttttt djidjivollplphphppppfp  

GP searches for an optimal function f that gives the minimum prediction error over the 

training data. The function set provides all the mathematical operators used in f that 

combine those terminals. The R in the terminal set represents a random constant, which 

can form random floating point numbers between –1 and 1 in the function f. Following is 

an example of the resulting model 

111121 )/(5365.01357.0 −−−−−− +−+−= ttttttt djilphpvolppp . 

In most cases, the resulting GP equations are very complex and almost impossible to 

translate into humanly understandable relations between variables [4]. A complete GP 

configuration is given in the next section.  

Another evolutionary algorithm called Fast Evolutionary Programming is considered 

as an alternative approach to model the time series in this thesis. The result of comparing 

this method and GP is discussed in Chapter 6.  

3.2.2 Genetic Programming Settings 

Adil Qureshi’s GPsys release 2b [29] was used to perform all the GP runs. The 

configuration used in this study is given in Table 3.1. 

 

Parameter Value 
Generations 100 
Populations 1000 
Function set +, -, /, *, sin, cos, exp, sqrt, ln 
Terminal set },,,,,,,,,,{ 2112121321 Rdjidjivollplphphpppp tttttttttt −−−−−−−−−−  
Fitness Sum of squared error between predicted and actual points 
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Max depth of new 
individual 9 

Max depth of new 
subtrees for mutation 7 

Max depth of individuals 
after crossover 13 

Mutation rate 0.01 
Generation method Ramped half-and-half 

Table 3.1: GP configuration 

 

3.3 Combining η -metric with Artificial Neural Network 

Artificial Neural Networks have been widely recognized as an effective modeling 

method in financial market forecasting [1, 30-35]. It is used as an alternative modeling 

method in this thesis. This section describes the configurations of the network to be used.  

3.3.1 Model 

The same inputs and output are used in the neural network model as in the genetic 

programming model described in last section, i.e.  

),,,,,,,,,( 2112121321 −−−−−−−−−−= ttttttttttt djidjivollplphphppppNNp . 

Again, p is the daily close price, hp and lp are the daily highest and lowest stock prices, 

respectively, vol is the daily traded volume of that stock, dji is the daily Dow Jones 

Industrial Average, and t is the time index. The function NN represents the neural 

network system. It takes 10 ten past variables as the inputs and gives one single output as 

the prediction.  

3.3.2 Neural Network Structure 

A feed-forward backpropagation neural network is used in our problem. The network 

is created by using the MATLAB function “newff”. For example, the following 

MABLAB code returns a two-hidden-layer feed-forward backpropagation network.  
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net = newff(PR,[3 3 1],{'logsig' 'logsig' 'purelin'}); 

The first parameter “PR” is a 2×R  matrix of min and max values for R input elements 

(R equals 10 in our model). The second parameter “[3 3 1]” indicates that both hidden-

layers contain 3 neurons, and the output layer contains a single neuron which gives a 

single output. The third parameter specifies the transfer functions for each layer, 

respectively. 
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Chapter 4 Examples 

In this Chapter, the η -metric method is tested on several sample time series, 

including deterministic time series, white noise time series, deterministic plus noise time 

series, random walk time series and stock price time series. All the experiments 

conducted in this Chapter use GP as modeling method and use 10-step past window to 

perform 1-step ahead prediction, i.e., for a time series { } ,  ,2 ,1, Ntyt …= , GP is used to 

search the function f than minimize the 1-step prediction error for the model 

. Also, a linear predictor is used to evaluate the predictability 

metric on these sample time series as a comparison to GP. A discussion on this 

comparison will be given at the end of this chapter.  

),,,( 21 −−= tttt yyyfy … 10−

4.1 Deterministic Time Series 

The Mackey-Glass equation is used to generate the deterministic time series in this 

study. The equation for the discretized map is [36] 

   )(
)(1

)()()1( tax
tx

tbxtxtx c −
−+

−
+=+

τ
τ , 

where a=0.1, b=0.2, c=10, and τ=16. The Mackey-Glass map is seeded with 17 pseudo-

random numbers and an 1100 points time series is generated. The first 1000 points are 

discarded to remove the initial transients. The last 100 points are used as the 

deterministic time series upon which the predictability metric is tested. The sample size 

is set to 100 for Kaboudan’s method. For the new method, the sample size 20=Q  and 

the shift step 5=τ . Results are shown in Table 4.1 and Table 4.2, where LP represents 

Linear Predictor, and GP represents Genetic Programming.   
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LPη  GPη  
0.986 0.999 

Table 4.1: Predictability of Mackey-Glass series using Kaboudan’s  -metric  

τ  LPη  GPη  
0 0.984 0.998 
5 0.935 0.999 
10 0.902 0.999 
15 0.930 1.000 
20 0.946 0.998 
25 0.960 0.995 
30 0.884 0.995 
35 0.858 0.996 
40 0.930 0.994 
45 0.970 0.996 

Average η  0.930 0.997 

Table 4.2: Predictability of Mackey-Glass time series using the new metric 

Both Kaboudan’s metric and the new metric give an average η  very close to 1, 

indicating that the time series is highly predictable. Note that the difference in  

between Kaboudan’s method and the new method presented in this paper is due to the 

length of the respective time series. Recall for Kaboudan’s method the time series is 100 

observations and for the new method each subsequence is 20 observations.  

SSSE

4.2 Random Walk Time Series 

A random walk time series is generated and tested using both the Kaboudan’s η-

metric and the new metric. The random walk series  

}{ tR , t N,,2,1 "= , 

is generated by  

ttt aRR += −1 , 
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where  is random variable uniformly distributed in [-0.5, 0.5], and the initial value 

. Again, for Kaboudan’s method, the sample size is 100, and for the new method, 

the sample size Q  and the shift step 

ta

100 =R

20= 5=τ . The results are shown in Table 4.3 and 

Table 4.4.  

LPη  GPη  
0.956 0.875 

Table 4.3: Predictability of random walk series using Kaboudan’s metric 

τ  LPη  GPη  
0 0.019 0.251 
5 0.156 0.127 
10 0.284 0.211 
15 0.481 0.457 
20 0.390 0.328 
25 0.350 0.124 
30 0.323 0.207 
35 0.237 0.204 
40 0.352 0.391 
45 0.442 0.247 

Average η 0.303 0.255 

Table 4.4: Predictability of random walk series using the new metric 

Kaboudan’s metric gives 875.0=η  for a random walk series. As stated in section 2.5 

and 3.1, this forces the predictability of most financial time series to be distributed in the 

narrow range of 0.875 to 1. The new metric gives an average 255.0=η , which gives a 

wider range for more predictable time series. 

4.3 White Noise Time Series 

A white noise time series was generated using a Gaussian random number generator 

with zero mean and variance 1. Results shown in Table 4.5 and Table 4.6. 
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LPη  GPη  
0.017 0.051 

Table 4.5: Predictability of white noise time series using Kaboudan’s metric 

τ  LPη  GPη  
0 -0.292 -0.191 
5 0.060 -0.61 
10 0.151 -0.333 
15 0.207 0.003 
20 -0.148 0.291 
25 0.085 -0.035 
30 0.042 -0.082 
35 0.183 0.225 
40 -0.253 0.271 
45 -0.301 0.184 

Average η  -0.026 -0.028 

Table 4.6: Predictability of white noise time series using the new metric 

Following Kaboudan’s suggestion, if 0<η , it is simple set equal to zero, indicating 

that the time series is not predictable. The predictability of the white noise time series is 

close to zero. This result matches the design goal very well. 

4.4 Deterministic Plus Noise Time Series 

In this example, noise is added to a deterministic time series, which is the Mackey-

Glass time series used in section 4.1, with a signal-to-noise ratio (SNR) equal to 10 dB. 

See Table 4.8 for the results. As expected, the predictability of this time series is some 

value between 0 and 1. 

LPη  GPη  
0.905 0.887 

Table 4.7: Predictability of deterministic plus noise time series using Kaboudan’s 

metric 
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τ  
LPη  GPη  

0 0.483 0.445 
5 0.368 0.682 
10 0.332 0.133 
15 0.380 -0.122 
20 0.404 0.297 
25 0.472 0.716 
30 0.355 0.645 
35 0.228 0.421 
40 0.220 0.399 
45 0.459 0.418 

Average η  0.370 0.403 

Table 4.8: Predictability of deterministic plus noise time series using the new metric 

4.5 Stock Price Series 

Next the new metric is applied to calculate the predictability of two stock price time 

series: Compaq Computer (CPQ) and General Electricity (GE) for the year 1999, with 

 and 20=Q 5=τ . The results are shown in Table 4.9 - Table 4.12.  

LPη  GPη  
0.927 0.952 

Table 4.9: Predictability of CPQ stock time series using Kaboudan’s metric 

τ  
LPη  GPη  

0 0.613 0.630 
5 0.756 0.855 
10 0.671 0.909 
15 0.845 0.921 
20 0.667 0.944 
25 0.825 0.968 
30 0.788 0.962 
35 0.711 0.876 
40 0.573 0.572 
45 0.464 0.875 

Average η  0.691 0.851 

Table 4.10: Predictability of CPQ stock time series using new metric 
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LPη  GPη  
0.826 0.867 

Table 4.11: Predictability of GE stock time series using Kaboudan’s metric 

τ  
LPη  GPη  

0 0.437 0.704 
5 0.136 0.120 
10 0.222 0.189 
15 0.140 0.041 
20 0.511 0.681 
25 0.741 0.868 
30 0.633 0.738 
35 0.563 0.729 
40 0.557 0.566 
45 0.451 0.681 

Average η  0.439 0.532 

Table 4.12: Predictability of GE stock time series using new metric 

Using GP, the new metric gives average 851.0=η  for CPQ and 532.0=η  for GE. 

These  η  values are different from the ones obtained from the totally deterministic time 

series and the random walk time series. This result suggests that these stock price series 

is more predictable than random walk series, but less predictable than a deterministic 

time series. The new metric does disclose this difference and quantifies it.  

It is noticed that over all these sample time series, the linear predictor gives similar 

predictability values to the values given by GP, though not identical. GP gives slight 

better prediction error than LP on average. Both methods give exactly the same order for 

these sample time series (ranked by their predictability values). This implies that the 

predictability metrics evaluated by these two methods are to some extent related to each 

other. To truly compare these results would need to do more experiments and a higher 

order statistical analysis such as a t-test. 
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Chapter 5 Applications 

This chapter presents results found by applying the predictability metric presented in 

chapter 3 to an investment strategy in the stock market. Three different modeling 

methods – genetic programming (GP) [15], artificial neural network (ANN) [37], and 

time series data mining (TSDM) [5] are used to test the effectiveness of the new metric.  

5.1 Financial Applications Using Predictability Metric and GP 

The first section presents the configurations of the experiments. The second section 

gives a simple trading strategy to show the behavior of the new metric. The third section 

discusses the results and proposes an improved trading strategy, which uses the 

predictability metric more effectively. The fourth and fifth sections present the results 

applying the new strategy on the 30 Dow Jones Industrial stocks.  

5.1.1 Experiment Configurations 

The 30 Dow Jones Industry stocks data from 1999 is used in the experiments. 

Kaboudan [4] concluded that stock prices  are mostly explained by the following ten 

variables:  

tp

2112121321 ,,,,,,,,, −−−−−−−−−− tttttttttt djidjivollplphphpppp , 

where p is the daily close price, hp and lp are the daily highest and lowest prices, 

respectively, vol is the daily traded volume of that stock, and dji is the daily Dow Jones 

Industrial Average.  Using Kaboudan’s results, these ten variables are used for GP to 

evolve the forecasting model:   

),,,,,,,,,( 2112121321 −−−−−−−−−−= ttttttttttt djidjivollplphphppppfp .  
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The training period for the GP is the past 50 days, i.e., the GP searches for a model 

that minimize the sum of squared prediction error over the past 50 days, and uses this 

model to predict the next day’s price.  

The predictability metric nη , defined below, for a particular day n is estimated using 

the method described in section 3.1. An η -series is first calculated, with window size 

 and shift step 20=Q 1=τ . The η -series is represented as:  

},,,,,{ 2020
22

20
21

20
20 "" nηηηη .  

The metric is defined as 

4/)( 20
30

20
20

20
10

20
−−− +++= nnnnn ηηηηη . 

Since  is calculated from the sample {20
sη },1,,18,19, sssstyt −−−= " , the data set 

used to calculate nη  would be { },1,,48,49 nnn, ntyt −−−= " , which is exactly the 

same set used to calculate the prediction. Thus, it is reasonable to use the predictability 

metric as an indicator of whether a prediction is reliable or not. Figure 5.1 shows this 

method graphically.  
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5.1.2 Behavior of the η-metric in Predicting Stock Market Returns 

The behavior of the η-metric is obtained by comparing the performances of three 

different trading strategies. The three trading strategies are, buy and hold, trading based 

on the prediction of GP only, and trading based on both the GP prediction and the 

predictability metric.  

The buy and hold strategy is straight forward, simply buy the stock on the first day of 

the trading period and sell it on the last day. It is equivalent to going long on all the 

trading days.  Going long is a trading strategy in which people buy shares today, hoping 

to sell them tomorrow at a higher price and thus make a profit. 

The second strategy (labeled “GP only”) uses the GP’s prediction to decide whether 

to go long or to go short. It goes long if GP predicts a price up, and goes short if GP 

predicts a price down. Going short is a strategy that involves selling shares you don't yet 

own in the expectation that the price will fall and you can buy them back at a lower price 

later (thus making a profit).  

The third strategy (labeled “GP/η ”) is similar to the second one. The difference is 

that it only trades on those days in which the stock has a high predictability (η  > 0.6), 

and does not trade on the other days. The reason for this is that a high predictability 

means a high confidence in the accuracy of the prediction; therefore only trading on 

these days can potentially reduce the risk and improve the return.  

Results of the trading experiment are shown in Table 5.1. The 2nd, 3rd and 4th 

columns give the total return of 190 trading days using the three strategies: Buy and Hold, 

GP only and GP/η , respectively. The 5th column is the number of days in which a trade 
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is performed, using the third strategy. The 6th column gives the average predictability 

over all the 190 trading days.  

The “GP only” strategy failed to defeat the simple “Buy and Hold” strategy in this 

experiment, but this does not necessarily mean that GP is useless. Since the “GP only” 

strategy tries to predict both price up and price down, and decides to go long or go short 

based on its prediction, it would work consistently independent on whether the market 

goes up or goes down. The “Buy and Hold” can only make profit in an ascending market, 

such as year 1999, and will lose money in a descending market.  

Stock 
Name 

Buy and 
Hold GP only GP/η  No. of 

trades Average η  
Aa 100.45% 30.60% 1.14% 5 0.366 

Axp 41.03% 41.53% 0.00% 0 0.439 
Ba 21.73% 11.39% 2.69% 9 0.315 
C 29.97% -24.64% -0.12% 14 0.461 

Cat 2.90% -7.31% -7.39% 21 0.328 
Dd 15.22% 16.36% -2.30% 35 0.445 
Dis -7.04% 20.36% -2.46% 11 0.395 
Ek 6.11% 28.33% 19.62% 61 0.488 
Ge 41.53% 51.36% 1.34% 8 0.381 
Gm 3.00% -6.69% 6.79% 12 0.407 
Hd 62.38% -4.47% 7.19% 13 0.421 
Hon 16.33% -9.47% -11.21% 50 0.482 
Hwp 67.56% -9.70% 10.08% 60 0.490 
Ibm 22.99% 59.99% 16.39% 151 0.674 
Intc 41.30% 7.47% 9.15% 35 0.466 
Ip 35.65% -39.27% -3.91% 20 0.364 
Jnj -0.28% -30.02% 14.00% 85 0.588 
Jpm -3.21% -39.90% 2.23% 27 0.487 
Ko -3.23% -15.25% 2.33% 50 0.483 

Mcd -11.31% 6.45% -0.77% 1 0.344 
Mmm 40.27% -16.37% 2.83% 45 0.505 

Mo -30.90% 62.18% 15.09% 35 0.477 
Mrk -13.79% -10.31% -2.25% 116 0.612 
Msft 31.59% 48.48% 10.89% 100 0.601 
Pg 11.67% 31.96% 19.79% 83 0.580 
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Stock 
Name 

Buy and 
Hold GP only GP/η  No. of 

trades Average η  
Sbc 2.10% -25.02% 3.71% 4 0.413 

t -4.85% 4.00% 14.84% 18 0.444 
utx -5.24% -0.06% 10.98% 53 0.522 
wmt 46.61% 13.83% 2.54% 3 0.430 
xom 16.33% -7.72% 3.53% 14 0.397 

average 19.23% 6.27% 4.89% 38 0.460 
std 0.280902 0.282304 0.07807  0.087 

Table 5.1: Total returns of the three different trading strategies 

Also, it can be seen from the result that the second strategy (GP only) gives a higher 

average return than the third one. But if we look at the number of trades of both 

strategies, the third strategy (GP/η ) has fewer trades than the second one. The number of 

trades here means the number of days in which a trading condition is hold, either going 

long or going short. Thus, the number of trades for the first two strategies will be 190, 

which is the total number of trading days. See Table 5.2 for the average return per trade 

of the three trading strategies. The average return per trade is obtained by calculating the 

geometric mean of the total return. The total return of the third strategy is less because it 

has a smaller number of trades compared with the other two strategies. Its average return 

per trade is actually higher. This implies that the third strategy has a potential to yield 

higher total return by performing more trades. A new trading strategy will be proposed in 

the next section based on this idea. Also, the third strategy gives a much lower variance, 

which means the risk is lower.  

Stock Name Buy and Hold GP only GP/η  
aa 0.37% 0.14% 0.23% 

axp 0.18% 0.18% 0.00% 

ba 0.10% 0.06% 0.30% 

c 0.14% -0.15% -0.01% 

cat 0.02% -0.04% -0.36% 
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Stock Name Buy and Hold GP only GP/η  
dd 0.07% 0.08% -0.07% 

dis -0.04% 0.10% -0.23% 

ek 0.03% 0.13% 0.29% 

ge 0.18% 0.22% 0.17% 

gm 0.02% -0.04% 0.55% 

hd 0.26% -0.02% 0.54% 

hon 0.08% -0.05% -0.24% 

hwp 0.27% -0.05% 0.16% 

ibm 0.11% 0.25% 0.10% 

intc 0.18% 0.04% 0.25% 

ip 0.16% -0.26% -0.20% 

jnj 0.00% -0.19% 0.15% 

jpm -0.02% -0.27% 0.08% 

ko -0.02% -0.09% 0.05% 

mcd -0.06% 0.03% -0.77% 

mmm 0.18% -0.09% 0.06% 

mo -0.19% 0.25% 0.40% 

mrk -0.08% -0.06% -0.02% 

msft 0.14% 0.21% 0.10% 

pg 0.06% 0.15% 0.22% 

sbc 0.01% -0.15% 0.92% 

t -0.03% 0.02% 0.77% 

utx -0.03% 0.00% 0.20% 

wmt 0.20% 0.07% 0.84% 

xom 0.08% -0.04% 0.25% 

average 0.08% 0.01% 0.16% 

Table 5.2: Average return per trade of the three different trading strategies 

Another noticeable result in Table 5.1 is that the total return of the third strategy has 

a high relationship to the average η  over the whole trading period. Figure 5.2 shows a 

plot of the total return vs. the average η . Each point in the plot represents a particular 

stock. It can be seen clearly from the plot that the two variables are positively related, i.e., 

higher predictability correspond to higher return. The slope of the linear fitting line is 
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positive. This result can also be shown by calculating the correlation coefficient between 

these two variables, which is 0.5232. 
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Figure 5.2: Plot of total return vs. predictability 

5.1.3 Trading Strategy 

In the previous section, a simple trading strategy using both GP prediction and the 

predictability metric is proposed. This trading strategy gives a total return lower than 

using GP only, but an important feature of this strategy is observed. That is, the lower 

total return is due to fewer number of trades; the average return per trade of this strategy 

is actually higher. This happens because for a particular stock, the predictability changes 

from day to day, sometimes it is high, and sometimes it is low. In the previous strategy, 

no trade is performed in those days with low predictability to improve the return. The 

idea of the new strategy is to look at many stocks for each trading day. For example, if 
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we look at 30 stocks in one particular day, 20 of them may have low predictabilities, but 

there is a good chance that several stocks with fairly high predictabilities can be found. 

Investors can put their money in those stocks with the highest predictabilities. Thus, the 

number of trading times increases while the advantage of the high average return per 

trade shown in the previous strategy still being hold. Based on this consideration, a new 

improved trading strategy is implemented as follows.  

1. Choose a set of stocks to be traded on.  

2. For each stock, calculate its η -metric.  

3. Select N stocks that have the highest η  to trade.  

4. Invest equally on the N stocks. Use GP’s prediction to decide whether to go long 

or to go short for each stock with high predictability for the current trading day.  

New experiments are done on the 30 Dow Jones Industry stocks using the same 

configurations again. The number of stocks to be traded, N, is set from 1 to 30, and the 

total returns are calculated for each N. Results are shown in Figure 5.3.  

Ideally, if the metric is a perfect predictability measure, this figure should show a set 

of monotonically decreasing bars, and only to trade on the most predictable stock (N=1) 

should give the highest return. But in practice this is not realistic, since stock time series 

are so complex that GP could not capture all the information underlying these time series. 

Statistical errors also distort the structure of the figure. From the plot, it can be seen that 

on the whole, selecting high predictable stocks based on our predictability metric to trade 

gives higher return than trading on all stocks. For example, trading on the top 10 high 

predictable stocks gives more than twice the return than trading on all the 30 stocks.  
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Figure 5.3: Results of the improved trading strategy using GP 

 

5.2 Financial Applications Using Predictability Metric and ANN 

A similar set of experiments is conducted using an ANN instead of a GP in this 

section, and similar results are observed.  

5.2.1 Experiment Configurations 

The same inputs and output are used for an ANN as for a GP, i.e.,  

),,,,,,,,,( 2112121321 −−−−−−−−−−= ttttttttttt djidjivollplphphppppNNp . 

Recall that when applying GP and Kaboudan’s original η -metric to a long time 

series, the metric are usually badly scaled because of the nonstationery of the time series 

discussed in section 1.1. A new metric was designed to fix this problems by dividing the 
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training set into smaller sections and calculating the average predictability over these 

smaller set.  

For ANN the problem is simpler because when the training set size is less than 50, 

the experiment results showed that the η -metric is not sensitive to whether the time 

series is stationary, i.e., the value of the η -metric would not depends on the length of the 

time series. Thus, there is no need to divide the 50 past data into smaller set. Kaboudan’s 

original η -metric is good enough in this particular problem.  

The training period is set to the past 50 days, i.e., the ANN is trained to find the best 

fit model that minimize the sum of squared prediction error over the past 50 days, and 

uses this model to predict the next day’s price.  

A feed-forward backpropagation neural network containing two hidden layers, each 

consisting of 3 neurons, and a output layer that has a single output neuron is trained. The 

network is created using the following MATLAB code:  

net = newff(PR,[3 3 1],{'logsig' 'logsig' 'purelin'}); 

where PR is a matrix specifying the boundaries of the inputs, and {'logsig' 'logsig' 

'purelin'} specifies the transfer functions of the two hidden layers and the output layer 

respectively.  

5.2.2 Experiment results 

The three similar trading strategies, i.e., buy and hold, using ANN only, and using 

ANN and η , are used to conduct the experiments. Results of the trading experiment are 

shown in Table 5.3. The 2nd, 3rd and 4th column give the total return of 190 trading days 

using those three trading strategies, respectively. The 5th column is the number of days in 
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which a trade is performed, using the third strategy. The 6th column gives the average 

predictability over all the 190 trading days.  

Stock 
Name 

Buy and 
Hold ANN only ANN/η  No. of 

trades Average η  
Aa 100.45% -19.56% 16.26% 82 0.5542 

Axp 41.03% -23.34% -8.59% 12 0.3467 
Ba 21.73% 5.73% -2.38% 38 0.4074 
c 29.97% 82.53% 6.58% 58 0.4868 

cat 2.90% 7.78% -0.38% 32 0.3747 
dd 15.22% -30.33% 0.87% 20 0.3757 
dis -7.04% -16.83% 10.11% 80 0.561 
ek 6.11% 67.82% 41.66% 60 0.4799 
ge 41.53% -20.82% 2.04% 40 0.4326 
gm 3.00% 37.98% 0.89% 6 0.338 
hd 62.38% -51.18% -4.22% 4 0.3382 
hon 16.33% 47.77% 6.65% 13 0.3609 
hwp 67.56% 44.28% 5.62% 19 0.367 
ibm 22.99% 21.97% 1.26% 15 0.3536 
intc 41.30% 12.25% 17.42% 6 0.3424 
ip 35.65% 59.80% 14.04% 23 0.361 
jnj -0.28% 69.37% -0.01% 2 0.3042 
jpm -3.21% 13.34% 0.00% 0 0.2507 
ko -3.23% 6.66% 0.17% 24 0.3977 

mcd -11.31% -11.16% -3.86% 26 0.435 
mmm 40.27% 25.18% 19.31% 26 0.3318 

mo -30.90% 82.15% 59.52% 56 0.4993 
mrk -13.79% -30.09% -13.98% 21 0.3422 
msft 31.59% -17.17% -2.70% 20 0.3829 
pg 11.67% 19.28% -3.94% 1 0.2605 
sbc 2.10% 52.74% 29.61% 38 0.4357 
T -4.85% 94.46% 12.88% 27 0.3944 

Utx -5.24% 113.37% 12.75% 25 0.3865 
Wmt 46.61% 21.58% 13.74% 22 0.3851 
Xom 16.33% 3.61% -6.27% 11 0.3576 

Average 19.23% 22.31% 7.50% 26.9 0.388 
Std 0.280902 0.4186 0.1522  0.087 

Table 5.3: Total returns of the three different trading strategies 
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It can be seen from the result that the “ANN only” strategy gives a higher average 

return than the “ANN/η ” strategy. But if we look at the number of trades of both 

strategies, the “ANN/η ” strategy has fewer number of trades (26.9) than the “ANN 

Only” strategy (190). The number of trades here means the number of days in which a 

trading condition is hold, either going long or going short. Thus, the number of trades for 

the first two strategies will be 190, which is the total number of trading days. See Table 

5.4 for the average return per trade of the three trading.  

Stock Name Buy and Hold ANN Only ANN/η  
aa 0.37% -0.11% 0.18% 

axp 0.18% -0.14% -0.75% 
ba 0.10% 0.03% -0.06% 
c 0.14% 0.32% 0.11% 

cat 0.02% 0.04% -0.01% 
dd 0.07% -0.19% 0.04% 
dis -0.04% -0.10% 0.12% 
ek 0.03% 0.27% 0.58% 
ge 0.18% -0.12% 0.05% 
gm 0.02% 0.17% 0.15% 
hd 0.26% -0.38% -1.07% 
hon 0.08% 0.21% 0.50% 
hwp 0.27% 0.19% 0.29% 
ibm 0.11% 0.10% 0.08% 
intc 0.18% 0.06% 2.71% 
ip 0.16% 0.25% 0.57% 
jnj 0.00% 0.28% -0.01% 
jpm -0.02% 0.07% 0.00% 
ko -0.02% 0.03% 0.01% 

mcd -0.06% -0.06% -0.15% 
mmm 0.18% 0.12% 0.68% 

mo -0.19% 0.32% 0.84% 
mrk -0.08% -0.19% -0.71% 
msft 0.14% -0.10% -0.14% 
pg 0.06% 0.09% -0.22% 
sbc 0.01% 0.22% 0.68% 

t -0.03% 0.35% 0.45% 
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Stock Name Buy and Hold ANN Only ANN/η  
utx -0.03% 0.40% 0.48% 
wmt 0.20% 0.10% 0.59% 
xom 0.08% 0.02% -0.59% 

average 0.08% 0.07% 0.18% 

Table 5.4: Average return per trade of the three different trading strategies 

New experiments are conducted on the 30 Dow Jones Industrial stocks using ANN 

and the following trading strategy (same as described in section 5.1.3),  

1. Choose a set of stocks to be traded on.  

2. For each stock, calculate its η -metric.  

3. Select N stocks that have the highest η  to trade.  

4. Invest equally on the N stocks. Use GP’s prediction to decide whether to go long 

or to go short for each stock with high predictability for the current trading day.  

 The results are shown in Figure 5.4, where N is the number of stock to be traded. 

The total returns are calculated for each N from 1 to 30.  

Again, conclusion can be drawn from the plot that selecting high predictable stocks 

based on the new predictability metric to trade gives higher return than trading on all 

stocks. ANN gives higher return than GP on average and the shape of the ANN plot is 

also closer to the ideal case (in which the bars should be monotonically decreasing). 

These results may imply that ANN has better search ability than GP in the application of 

stock market predicting. More experiments and statistical analysis need to be done to 

verify this conclusion.  
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Figure 5.4: Trading results using ANN
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Chapter 6 Attempts Using Other Modeling Approaches 

This chapter presents some other nonlinear time series modeling approaches that 

have been tested in this research. As mentioned in Chapter 3, FEP may be an alternative 

approach which can be used in calculating the predictability metric. The TSDM method, 

however, shows no improvement when combine with time series predictability 

approaches.  

6.1 Fast Evolutionary Programming (FEP) 

Rao and Chellapilla [38] proposed an alternative modeling approach called fast 

evolutionary programming (FEP) to optimize the parameters of a reduced parameter 

bilinear model (RPBL). The RPBL model [21] is capable of effectively representing 

nonlinear models with the additional advantage of using fewer parameters than a 

conventional bilinear model. FEP, which can be used to determine RPBL model structure, 

is shown here in this section to have reasonable optimization performance. In 

comparison with conventional evolutionary programming, FEP evolves RPBL models 

with lower normalized mean squared error (NMSE) and also lower model order. This 

approach will be shown to have less computational cost and less model complexity when 

compared with GP. However, FEP prediction accuracy is lower than GP.  

The time series used in the following experiments are scaled to lie between –1 and 1 

before modeling. The mean square errors (MSEs) and times are all averaged over 10 runs, 

and σ  is the standard deviation.  
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6.1.1 Experiments and results 

6.1.1.1 The Mackey-Glass Time Series 

The first time series considered in this study is generated by the Mackey-Glass 

equation. The equation for the discretized Mackey-Glass map is 

   )(
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+=+

τ
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where a=0.1, b=0.2, c=10, and τ=16. The Mackey-Glass map is seeded with 17 pseudo-

random numbers, creating a 1200 point series. The first 1000 points are discarded to 

remove the initial transients. The next 100 points are used as the training set and the last 

100 points are used as the test set, see Figure 6.1. Results from GP and FEP are shown in 

Table 6.1.  

 

Figure 6.1: Mackey-Glass map 
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 GP FEP 

Training MSE 5.687×  510− 4.735×  510−

Trainσ  2.333×  510− 2.613×  510−

Test MSE 5.038×  510− 4.648×  410−

Testσ  2.123×  510− 1.851×  410−

Time (sec) 254.5 76.1 

Timeσ  159.8 3.7 

 

 

 

 

Table 6.1: Results for the Mackey-Glass time series 

 

It can be seen that the models evolved by GP give much smaller MSE than FEP in 

the test data, although they have similar MSE for the training stage. The large difference 

between training MSE and Test MSE of FEP shows that FEP is badly over-trained in this 

case. Since the Mackey-Glass series is a totally deterministic time series, this result may 

imply that GP is more suitable for modeling those series with strong signals and weak 

noise than FEP. Even though GP takes about four times longer time, it would be the 

preferred method due to its better accuracy.   

6.1.1.2 The Sunspot Time Series 

The second experiment was conducted on the yearly sunspot series for the years 

1800-1999 [39], see Figure 6.2. Once again, the first 100 data points are used as training 

set and the next 100 points are used for testing. The results are given in Table 6.2. 
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Figure 6.2: Sunspot time series 

 GP FEP 

Training MSE 2.409×  210− 4.019×  210−

Trainσ  6.11×  310− 1.34×  310−

Test MSE 4.582×  210− 5.765×  210−

Testσ  1.582×  210− 4.23×  310−

Time (sec) 205.4 70.1 

Timeσ  28.1 4.4 
 

Table 6.2: Results for the sunspot time series 

In modeling the sunspot time series, the accuracy performance between the two 

methods is similar. The GP gives slightly better accuracy, but again, it takes three times 

as long to compute as the FEP method.  
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6.1.1.3 Stock Prices Time Series 

Two arbitrarily selected stocks, Compaq Computers (CPQ) on the NY Stock 

Exchange, and Microsoft (MSFT) on the NASDAQ, are used as the third experimental 

time series. The closing prices of the first 210 trading days in 1999 are used. The first 10 

points are need for modeling the first prediction, and the next 200 points are divided into 

training and test set in the same manner as before, see Figure 6.3 and Figure 6.4. Table 

6.3 and Table 6.4 present the modeling results.  

 

Figure 6.3: MSFT price time series 

 

 GP FEP 

Training MSE 6.597×  310− 6.951×  310−

Trainσ  3.65×  410− 2.30×  510−

Test MSE 7.076×  310− 6.456×  310−

Testσ  2.19×  310− 3.12×  410−
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Time (sec) 126 64 

Timeσ  87.3 6.8 

Table 6.3: Results for the MSFT time series 

 

Figure 6.4: CPQ price time series 

 

 GP FEP 

Training MSE 6.002×  310− 7.003×  310−

Trainσ  1.32×  310− 9.15×  510−

Test MSE 2.335×  310− 2.148×  310−

Testσ  4.12×  410− 7.39×  510−

Time (sec) 119.6 68.1 

Timeσ  115.3 4.0 

Table 6.4: Results for the CPQ time series 
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The results from the stock time series are similar to the sunspot results. The two 

methods give similar error in both training and testing, but the GP is more time 

consuming. It was noticed that the results generated by FEP in each trial are consistent, 

but this is not the case for GP. There are larger variances in both GP’s MSE and time. 

One interesting observation in the experiments is that as the generations increases, the 

models evolved by FEP tend to become simpler while those evolved by GP always 

become more complex (measured by the total number of nodes in the GP tree). This 

explains why GP is not as consistent as FEP. As the GP runs the learned model becomes 

more complex. This means that more of the solution space is being explored. Note the 

space of functions explored by the GP is much larger than the function space searched by 

the FEP. Thus as the GP runs it will encounter more local minimum in each generation. 

In the experiments, the best solution is always found by GP. This also suggests that GPs 

have relatively stronger search ability.  

In these two stock time series, FEP shows better performance in both accuracy and 

computation time than GP. But as mentioned previously, the solutions found by GP have 

a fairly large variance compared with FEP. This is because that GP is more likely to fall 

into a local minimum and generate poor solutions. The results of GP could be improved 

further with throwing away these bad solutions. To demonstrate this, the 50% solutions 

that have low training MSE are kept for testing, and the remaining 50% of the high error 

solutions are discarded. The results after this process are shown below in Table 6.5. It 

can be seen that GP has better accuracy performance that FEP.  

 GP FEP 

MSFT 5.368×  310− 6.280×  310−

CPQ 2.092×  310− 2.100×  310−
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Table 6.5: Test MSE by averaging best 50% solutions 

6.1.2 Conclusion 

In this section, two different nonlinear modeling techniques: Genetic Programming 

and Fast Evolutionary Programming are applied to solve three different kinds of times 

series modeling problem. The GP has been shown to have better search ability than FEP, 

especially when dealing with more predictable time series. FEP performs better when 

applied to noisier time series. For real world time series such as sunspot time series and 

stock price time series, its accuracy performance is similar to GP, but with less 

computational effort.  

However, in the financial applications showed in chapter 5, the accuracy 

performance is much more important than computational performance. Therefore, GP is 

considered to be a better modeling approach in this particular application. FEP may be 

more useful in some other applications where the computation time is more important.  

6.2 Time Series Data Mining (TSDM) 

Povinelli introduced a new framework for analyzing time series data called Time 

Series Data Mining (TSDM) [5, 26, 27]. This framework adapts and innovates data 

mining concepts to time series analysis. Unlike most of the other time series analysis 

methods that try to characterize and predict all time series observations, TSDM methods 

focus on characterizing and predicting events. Therefore, it does not require the time 

series to be stationary. It also overcomes the limitations of traditional methods of 

requiring normality and independence of the residuals in the time series. 

In the previous work [5], the TSDM method has been shown to be able to effectively 

recognize patterns contained in stock price time series, i.e., the patterns found in the 
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training time series also exist in the test time series, but it was noticed that TSDM could 

also find patterns in a pure noise time series in the training stage. This result has been 

shown empirically in this thesis. This fact leads to the result that the TSDM method 

found events in the reshuffled time series no worse than in the original time series. For 

example, in the AXP stock time series from 1999, the TSDM method found 20 price-up 

events that have an average return of 0.63% (Table 6.6). In the reshuffled version of this 

time series, the TSDM method found 23 price-up events that have an average return of 

17.6% (Table 6.7). Results from other stock time series are similar. This makes the η -

metric not applicable to the TSDM method because it can hardly tell the differences 

between the original time series and the reshuffled one. Some other metric is needed for 

this method.  

Index Return 
12 2.29% 
17 5.49% 
22 -3.35% 
39 -1.18% 
43 0.81% 
63 2.05% 
74 1.43% 
89 -2.01% 
99 -1.94% 
103 3.69% 
111 -1.28% 
119 1.52% 
121 -0.63% 
122 1.72% 
134 -2.45% 
143 2.97% 
145 -1.53% 
180 2.67% 
187 4.10% 
190 -1.76% 
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Average 0.63% 

Table 6.6: TSDM predictions for AXP 1999 

 

Index Return 
8 -1.20% 

13 24.6% 

19 43.5% 

26 7.57% 

57 49.5% 

68 16.0% 

85 44.2% 

88 67.6% 

103 49.1% 

107 3.43% 

112 38.0% 

116 -3.47% 

122 45.2% 

135 -32.3% 

136 48.2% 

140 -2.99% 

144 45.8% 

151 42.8% 

153 28.6% 

157 -32.6% 

163 -42.8% 

170 0.20% 

171 -33.7% 

Average 0.63% 

Table 6.7: TSDM predictions for reshuffled AXP 1999 

The second attempt is to use the probability value α  as a possible predictability 

metric, where α  is the probability to reject the test hypothesis that the set of eventnesses 

associated with the temporal pattern cluster is different from the set of eventnesses not 

associated with the temporal pattern cluster [5].  This attempt failed again since the 

experiment result showed that over the 30 Dow Jones Industry stocks in year 1999, the 
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α  value and the return of the investment have a correlation coefficient of –0.028 (523 

predictions, see Table 6.8), which indicates that these two variables do not have much 

relationship with each other. Therefore, the α  value cannot be used as an indicator to 

predict the return.  

αIndex  Return 
1 0.0198 -5.41% 

2 0.0131 -5.12% 

3 0.0559 -4.21% 

4 0.0696 -3.49% 

5 0.0903 -3.09% 

6 0.0130 -2.83% 

7 0.0003 -1.89% 

8 0.0005 -1.38% 

9 0.1270 -4.70% 

10 0.0007 -1.87% 

…   

520 0.0000 2.31% 

521 0.0588 2.73% 

522 0.0000 3.28% 

523 0.0777 4.03% 

Table 6.8: TSDM results: α  vs. return 

A possible reason for the above two failures may be due to the fact that the TSDM 

method only tries to recognize patterns in a time series and predict the events following 

these patterns. It is not trying to predict the data that it cannot recognize. This is very 

similar to the way that the predictability metric works. In other words, the TSDM method 

already takes advantage of some kind of predictability information of a time series, and 

thus the attempt of trying to build another predictability metric on top of it could not do 

any better. 
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Chapter 7 Conclusions and Future Work 

This thesis makes an original contribution to the field of time series analysis and 

forecasting by developing a new time series predictability metric and studying its 

applications in financial time series forecasting. This new time series predictability 

metric was developed based on the η -metric method introduced by Kaboudan [4], but 

overcomes the two main disadvantages of the pure η -metric method. It also provides a 

new feature, which shows how the predictability changes over different subsequences in 

a time series.  

The new metric can be built on top of many time series modeling methods and 

improves their performance in time series forecasting. Successful attempts have been 

made with Genetic Programming (GP) and Artificial Neural Networks (ANN) in the 

application of stock time series prediction.  

This thesis has demonstrated that the new metric has successfully determined the 

difference between different kinds of time series including deterministic time series, 

white noise time series, deterministic plus noise time series, random walk time series and 

stock price time series. This test shown in Chapter 4 validates that this metric does have 

the capability to discover the predictability information underlying a given time series. 

This feature is used in Chapter 5 to develop a new stock trading strategy, which evaluates 

the predictability metric for a set of stocks, and trades on those stocks with relatively 

high predictability. The results showed that combining the predictability metric and time 

series modeling technique generate better return than without using the predictability 

metric.  
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Besides GP and ANN, two other modeling techniques, Fast Evolutionary 

Programming (FEP) and Time Series Data Mining (TSDM), were considered as 

modeling methods. Chapter 6 shows that FEP has worse accuracy performance than GP, 

and there is no good way to combine TSDM with the predictability metric. Therefore, 

these two techniques were not used in the trading experiments.  

Possible future work of this research includes more robust statistical analysis of the 

results, study of the η -metric for other time series modeling techniques, further 

empirical studies, and theoretical evaluation of the metric. By doing these researches, the 

current predictability metric may be generalized so that it does not only apply for one 

specific modeling method. 
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