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Abstract - In this paper, the dual track use of the time stepping coupled finite 
element-state space modeling of induction motors to generate databases for 
healthy and faulty motor performances, coupled to time series data mining 
techniques, is presented.  This dual track is demonstrated here in its embryonic 
stage to represent a potentially very powerful motor fault diagnostics and 
identification tool, when fully developed to completion. Thus, the paper presents 
results that point to a potentially very useful technical tool for fault diagnostics 
and preventative maintenance of electric motor-drive systems. 

 

I. Introduction 
Three-phase induction motors are the machine of 

choice in the majority of electronically controlled 
adjustable/variable speed drive (ASD) applications. 
In the not too distant future, a widening use of 
induction motors/ASDs for naval vessel propulsion is 
expected [1]. An important area of study during the 
past twenty years is the analysis and diagnosis of 
induction motor faults and associated performance 
characteristics. A large number of such investigations 
are summarized in an IEEE-PES working group 
paper on induction motor fault detection and 
diagnostics, see [2]. As stated in [2] �performing 
reliable and accurate fault detection and diagnosis 
requires understanding the cause and effect of motor 
faults to motor performances.� Accordingly, we 
demonstrate in this paper the fundamental 
foundations of a method for detection of incipient 
faults and consequent prediction of catastrophic 
faults in induction machine adjustable speed drives 
(IMASDs), which does not depend on the familiar 
frequency domain spectra concepts [2-4]. The myriad 
of incipient and potentially catastrophic faulty 
operations includes, but are not restricted to the 
following: 
1. Broken bars and/or end-ring connectors in the 

squirrel-cages of induction motors [5],  
2. Dynamic and static airgap eccentricities arising 

from assembly defects or subsequent 
mechanical/bearing problems that may develop 
in the field during operation [3], and 

3. Phase unbalances in stator armatures developing 
due to partial internal turn-to-turn short circuits 
within armature coils, phase unbalances 
originating within the inverter power electronic 
portion of a drive, or other phase voltage 
unbalances due to factors external to IMASD 
systems. 

Accordingly, the technique developed here will 
extensively and economically characterize and 
predict faults from the IMASD design data. These 
studies are performed using our proven Time 
Stepping Coupled Finite Element-State Space 
(TSCFE-SS) method to generate fault case data [3, 5-
13]. Then, the fault cases are classified by their 
inherent characteristics. So called �signatures� or 
�fingerprints� are extracted or mined from the fault 
case data using our novel Time Series Data Mining 
(TSDM) technique [14, 15]. The process of 
generating fault data and mining fault signatures is 
repeated until a high degree of accuracy is achieved 
in the prediction and identification of faults. 

Our approach to the problem of diagnosing faults 
in IMASDs is new and unique. First, using motor 
design information and the TSCFE-SS method, we 
can generate data for a plethora of fault conditions 
without the need to encounter and acquire data for 
faults in actual field experience with IMASDs. 
Second, through data mining, hidden patterns and 
nuances of differences between healthy performance 
and various fault signatures are automatically and 
efficiently identified and made use of in fault 
identification and prediction. 



 

This approach enables one to compute on a time 
instant-by-instant basis the input and developed 
powers of a motor as functions of the particular 
magnetic circuit, winding layouts, and materials. 
Computations include ohmic and magnetic core 
losses as well as the effects due to modern fast 
electronic switching on overall motor-controller/drive 
interaction and resulting performance [8-13]. Thus, 
one can use such algorithms in parametric studies. 

II. Potential Benefits from this Work 
This paper presents the development of the 

conceptual framework and proof of principle for a 
comprehensive set of algorithms for incipient fault 
prediction before such faults lead to noise and 
vibration levels that are deemed incompatible with 
quite performance in naval applications. This is in 
addition to actual fault identification/diagnosis in 
adjustable speed motor-drives. This proactive 
approach can head off the costly and catastrophic 
cascading of faults that lead to plant shutdowns and 
consequent long repair/maintenance periods. The 
resulting fault prediction, identification, and 
diagnostic information also can facilitate the creation 
of efficient and effective maintenance schedules. This 
includes induction motors to be used in ASDs for 
naval and marine propulsion applications. 

The study of the effects of such incipient faulty 
operations occurs through a dual track. The first track 
generates databases of fault signature profiles 
through TSCFE-SS simulation of healthy and faulty 
modes of operation of IMASD [3, 5-13], see Figure 
1. The advantage of this method lies in its rigor in 
predicting effects of motor faults, including the 
incipient variety, on performance. The second track 
identifies and extracts hidden patterns and nuances 
that are characteristic and predictive of faults and 
incipient faults through TSDM [14, 15] of the fault 
signatures, see Figure 2. 

III. Methodology and Techniques 
The TSCFE-SS method has been detailed and 

verified in a number of previous papers, see [3, 5-13], 
and therefore only a functional block diagram flow 
chart of the method is given here in Figure 1 for the 
convenience of the reader. The TSCFE-SS aspect 
fully incorporates the nonlinear effects of magnetic 
saturation on the time-varying 2-D magnetic field in 
a motor�s cross-section, and makes full use of the 
natural machine winding�s frame of reference [3, 5-
13]. Hence, this assures inclusion of all significant 
space harmonics due to the physical design and 
nature of the motor, as well as the time harmonics 
generated from the inverter switching, into the motor-
drive system modeling and simulations. Accordingly, 

the simulated fault signatures are derived from time-
domain phase current and voltage waveforms, and 
potentially from simulated instantaneous torque 
profiles, which rigorously incorporate the motors� 
design characteristics and nonlinearities. 

Figure 1 � Functional Block-Diagram/Flow Chart 
of the TSCFE-SS Method 

Figure 2 � Block Diagram of Dual Track 
Approach 

Hence, in an actual IMASD, the monitored 
performance characteristics include signals of current 
and voltage waveforms of the motor windings and 
time domain torque profiles. Other characteristics 
that will be calculated only by simulation, and need 
not be monitored, are waveforms of flux density, flux 
and flux linkage variations with time throughout a 
motor's magnetic circuits, and core and ohmic losses. 
The TSCFE-SS based simulation model is used here 
to generate the database of motor current, voltage, 
and torque waveforms and profiles under healthy 
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motor conditions, as well as hundreds of faulty 
operating scenarios in future extensions of this work. 

In parallel, from such databases it is anticipated 
that the TSDM technique will extract fault signatures 
indicative of incipient and actual faults from the 
waveforms generated by the TSCFE-SS module. The 
TSDM method overcomes limitations (including 
stationarity and linearity requirements) of traditional 
time series analysis techniques by adapting data 
mining concepts [14, 15] for analyzing such time 
series (time-domain waveforms are referred to hence 
forth as time series). Based soundly in dynamical 
systems theory [16], the TSDM method reveals 
hidden patterns in time series data by taking 
advantage of the event nature of many problems. 

The TSDM method focuses on predicting events, 
which are important occurrences. This allows the 
TSDM methods to predict nonstationary, 
nonperiodic, irregular time series, including chaotic 
deterministic time series. The TSDM methods are 
applicable to time series that appear stochastic, but 
occasionally (though not necessarily periodically) 
contain distinct, but possibly hidden, patterns that are 
characteristic of the desired events. They have been 
successfully applied to characterizing and predicting 
complex, nonperiodic, irregular, and chaotic time 
series events in both the engineering and the financial 
domains [14, 15, 17, 18]. 

The concept proposed here will in its fully 
developed form lead to an interactive synergy 
between the TSCFE-SS and TSDM components of 
the work where the TSCFE-SS will generate an 
initial set of fault waveforms for the TSDM module 
to data mine. The TSDM module will also request 
further fault waveforms from the TSCFE-SS module 
as it recognizes a sparcity of data points in key 
regions of the motor-drive performance space, see 
Figure 2. 

The proposed dual track of combined use of the 
TSCFE-SS model and the TSDM technique offers 
several attractive and unique features. These 
attractive features include, first, the ability to 
rigorously, completely and accurately generate the 
motor waveforms and profiles through TSCFE-SS 
simulations, thereby minimizing expensive motor 
fault data collection in the field, as well as generate 
signatures for plausible fault scenarios that may not 
have yet been encountered in actual field operation. 
Second, the proposed dual track overcomes the time 
consuming process of manually identifying, 
characterizing, and separating key patterns that are 
indicative of incipient motor faults. Third, it 
synergistically combines the two technologies 
allowing a �sum is greater than the parts� solution. 
Through the synergistic interaction, the TSDM 
module can automatically invoke the TSCFE-SS 

module to generate further waveforms as needed to 
characterize the motor faults and generate the 
required characteristic temporal patterns. 

Practical demonstration of fault prediction in 
IMASDs will be given here involving broken 
squirrel-cage bars and broken end-ring connectors. 

IV. Application of the TSCFE-SS/TSDM 
Methodology for Fault Identification and 
Diagnostics 

The TSCFE-SS method, which was previously 
detailed and experimentally verified in [3, 5-13], was 
utilized in the simulation and modeling of the 
performance of a 3-phase, 60-hz, 34-bar squirrel-
cage, 2-pole, 208-volt, 1.2-hp, Y-connected induction 
motor, the cross-section of which is given in Figure 
3.  

Figure 3 � Motor Cross Section 
For this motor, the healthy and faulty cage circuit 

configurations are shown in Figures 4 through 6. The 
motor was energized from a balanced sinusoidal 3-
phase, 208-volt (line-to-line) source. A simulated 
phase current waveform is shown in Figure 7. The 
validity of this simulation was verified by actual 
laboratory tests results, which were reported in detail 
in references [7, 8, 11-13]. Furthermore, the TSCFE-
SS algorithm was used to simulate two types of 
faults: (1) three adjacent broken squirrel-cage bars, 
see Figure 5, the phase current waveform of which is 
given in Figure 8, and (2) three adjacent broken 
squirrel-cage end-ring connectors, see Figure 6, the 
phase current waveform of which is given in Figure 
9, see references [5, 10, 12]. 

 

Figure 4 � Healthy Motor Squirrel-Cage 
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Figure 5 � Three Adjacent Broken Bar Cage 

Figure 6 � Three Adjacent Broken End-Ring 
Connectors Cage  

The apparent modulation envelope in the current 
waveforms of the three broken bar and three broken 
connector cases in Figures 8 and 9 is attributable to 
the heavy localized saturation pattern arising in the 
rotor laminations near the fault due to the absence of 
bar currents in the rotor. Hence, the normal squirrel-
cage bar current demagnetization effects, which are 
inherent in healthy motor operation, are absent. For 
further explanation of this and associated apparent 
saliency phenomena, see references [5, 10, 12]. 

Figure 7 � Simulated Phase Current Waveform 

Figure 8 � Three Adjacent Broken Squirrel-Cage 
Bars Waveform 

 

Figure 9 � Three Adjacent Broken Squirrel-Cage 
End-Ring Connectors Waveform 

We use a process called time-delay embedding 
[19] to transform the current time series into a 
reconstructed state space, also called a phase-space. 
Takens [16] proved, with certain limitations, that 
given a time series generated by sampling a state 
variable of a system, a topologically equivalent state 
space can be reconstructed by the time-delay 
embedding process [19]. 

If the embedding is performed correctly, Takens� 
Theorem guarantees that the reconstructed dynamics 
are topologically identical to the true dynamics of the 
system. Therefore, the dynamical invariants also are 
identical [20]. The difficulty in the time-delay 
embedding process is in estimating Q, the original 
state space dimension. Fortunately, as shown in [14, 
15, 19, 20], useful information can be extracted from 
the reconstructed state space even if its dimension is 
less than 2Q+1. 

Given the current time series 
( ){ }, 1, ,= =I i k k N� , where k is a time index, and 

N is the number of observations.  A two dimensional 
phase-space is created by plotting i(k-10) on the x-y 
plane�s abscissa and i(k) on the ordinate. The 
resulting phase-spaces are given for the healthy cage 
case, the three broken bar case, and the three broken 
connector case in Figures 10, 11, and 12, 
respectively, for the current time series given in 
Figures 7, 8, and 9, respectively. 

On a one to one correspondence basis, the reader 
can distinctly see a difference in pattern between the 
healthy cage case of Figure 10 and the two faulty 
cage cases of Figures 11 and 12. However, a 
distinction between the patterns of the phase-space 
for the three broken bars, Figure 11, and the phase-
space for the three broken connectors, Figure 12, is 
not at once obvious. 
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Figure 10 � Healthy Motor Phase-Space 

Figure 11 � Broken Bars Phase-Space 

Figure 12 � Broken Connectors Phase-Space 
Meanwhile, a first current difference, ∆i(k) = {i(k) 

� i(k-1)}, set of time series were generated for the 
three current time series of Figures 7, 8, and 9. 
Figures 13, 14, and 15 illustrate the current first 
difference time series for the healthy cage, the three 

broken bar cage, and three broken connector cage 
cases, respectively. 

Figure 13 � Healthy Motor Current First 
Difference Waveform 

Figure 14 � Broken Bars Current First Difference 
Waveform 

Figure 15 � Broken Connectors Current First 
Difference Waveform 

The phase mapping technique, which was 
explained above and applied to the current 
waveforms, i(k), is also applied here. This resulted in 
the phase-spaces of Figures 16, 17, and 18 for the 
healthy cage, the three broken bar cage, and the three 
broken connector cage cases, respectively. A 
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comparison between the three phase-spaces reveals 
some interesting characteristics. 

Figure 16 � Healthy Motor Current First 
Difference Phase-space 

Figure 17 � Broken Bars Current First Difference 
Phase-space 

Figure 18 � Broken Connectors Current First 
Difference Phase-space 

Here the resulting phase-spaces of Figures 16, 17, 
and 18 at once show distinct pattern differences 
between the cases for the healthy cage, the three 
broken bar cage, and the three broken connector 
cage, respectively. The most important element in all 
these phase-space is that no time profile information 
is lost in this process, which is quite contrary to 
frequency domain based methods such as Fourier 
transform/frequency spectra [3, 4]. Also, Time Series 
Data Mining (TSDM) techniques [14, 15, 17, 18] can 
be very powerful in distinguishing between these 
mappings shown above as will be explained in the 
next section. 

The TSCFE-SS model simulation resulted in time-
domain torque profiles [5, 12], not shown here for 
space considerations, for the three broken bar, and 
the three broken end-ring connectors cases, 
respectively. Torque first difference profiles were 
generated. Time-delay embedding, which was 
explained and applied above to the current first 
difference waveforms, was also applied here to the 
torque first difference time series. The resulting 
phase-spaces are shown here for the healthy rotor 
cage, the three broken bar, and three broken 
connector cases in Figures 19, 20, and 21, 
respectively.  The distinction in shape between the 
three torque phase-spaces is strikingly obvious at first 
glance. This suggests that monitoring of torque for 
fault diagnosis and detection may constitute a 
powerful tool indeed, at least in critical motor drive 
systems. 

V. Method for Distinguishing Faults 
The proposed method for distinguishing fault types is 
outlined as follows: 
1. Take pairs of phase-spaces generated from the 

same underlying time series, but representing 
different fault types, for example the healthy 
motor torque first difference phase-space and the 
broken bars torque first difference phase-space. 

2. Search each phase-space for hyperspherical 
regions that allow the two fault types to be 
distinguished. These regions will take one of two 
forms. The first will be regions that contain 
phase-space points from one fault type, but not 
the other. The second will be regions that contain 
a much higher percentage of phase-space points 
from one fault type than the other. 

Examples of such regions are shown in Figures 19, 
20, and 21. In Figure 19, the solid circles indicate a 
healthy condition. In Figure 20, the solid circles 
indicate a 3 broken bars fault. In Figure 21, when 
80% of the phase-space points reside within the solid 
circle, a three broken end-ring connectors fault type 
is indicated. The torque time series were divided into 
a training time series and a testing time series. These 
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hyperspheres were learned in the training time series, 
but verified in the separate test time series. 

Figure 19 � Healthy Motor Torque First 
Difference Phase-Space 

Figure 20 � Broken Bars Torque First Difference 
Phase-Space 

Figure 21 � Broken Connectors Torque First 
Difference Phase-Space 

VI. Discussion of Results 
The phase mapping techniques applied above to 

the TSCFE-SS simulated induction motor time-
domain current wave forms, and torque time-domain 
profiles, suggest that such simulations can be used to 
generate extensive databases of fault signatures 
which can be data mined by TSDM techniques for 
fault diagnostics of various classes of induction 
motors and other motors used as prime-movers in 
ASD systems. Such systems are used or will be used 
in future naval applications, including electrically 
driven ship/vessel propulsion systems. 

The development of such a dual track TSCFE-
SS/TSDM technical tool, if carried to its full 
potential, can be very useful in the detection of 
incipient motor-drive system faults before these 
evolve into full-fledged faults, causing undesirable 
acoustic noise and other performance problems. This 
tool can be instrumental in the development of 
reasoned and well-planned proactive/preventative 
maintenance schedules for all sorts of motor-drive 
systems used in critical naval applications. This dual 
track TSCFE-SS/TSDM technology if carried to its 
full potential will also be of great benefit to the motor 
drives industry and all its civilian sector 
users/customers. Thus, it is a dual-purpose 
technology. This TSCFE-SS/TSDM technical tool is 
specially needed and suited to high power density 
electric machines, which are inherently designed with 
high levels of magnetic saturation throughout their 
magnetic circuit cores, and hence are less fault-
tolerant in so far as severity of faults with regard to 
performance degradation. 

VII. Conclusion 
The results shown in this paper indicate that the 

ultimate full development of this model, with a dual 
track of simulated fault signatures coupled to data 
mining techniques, will facilitate and speed the 
accumulation of large numbers of fault signatures by 
means of reliable and accurate numerical simulations. 
This model will accomplish this without the need for 
difficult and perhaps unachievable collection and 
acquisition of such data from actual field failures, 
which would be limited in number as well as costly 
and difficult to obtain. The generated databases for 
myriads of fault scenarios can constitute a very 
powerful diagnostics tool for proactive maintenance 
and minimization of plant down times for any 
practical application involving electrical adjustable 
speed motor-drive systems. 
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