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Abstract 
 
 
This paper describes a novel technique for 
determining a useful dimension for a time-delay 
embedding of an arbitrary time series, along with 
the individual time delays for each dimension.  A 
binary-string genetic algorithm is designed to 
search for a variable number of time delays that 
minimize the standard deviation of the distance 
between each embedded data point and the 
centroid of the set of all data points, relative to 
the mean distance between each data point and 
the centroid.  The geometric transformations of 
rotation and scaling are added to the algorithm to 
allow it to identify attractors that are not aligned 
with the data axes.  Several artificial and real-
world attractors and time series are analyzed to 
describe the types of attractors favorable to the 
use of this technique. 

1 INTRODUCTION 
Time-delay embedding, or establishing a phase space 
representation of a system using current and delayed 
values from a sampled time series, is a useful technique 
for characterizing nonlinear behavior of a system 
(Abarbanel, 1995; Povinelli, 1999).  Takens (1981) 
showed that an embedding of dimension greater than 
twice the dimension of a smooth manifold containing an 
attractor is a true embedding; i.e., the phase space is 
topologically equivalent to the state space of the attractor.  
Sauer and Yorke (1993) extended Takens’ continuous-
time work into discrete time and found that in many 
circumstances a lower embedding dimension is sufficient 
to represent the dynamics of the system. 
When performing a time-delay embedding of a sampled 
time series, the two key questions to be answered are (1) 
how many embedding dimensions are required, and (2) 

what are the proper time delays, or lags, to use for each 
dimension?  As described above, Takens, Sauer, and 
Yorke have theoretical answers to the first question.  
However, when facing a system with an attractor of 
unknown dimensionality, their theorems provide only 
general guidance.  To test the adequacy of a particular 
embedding dimension, the false nearest neighbors 
technique (Kennel, Brown, and Abarbanel, 1992) 
examines the relative location of neighboring data points 
in the next higher dimension to determine whether the 
neighboring points remain neighbors in the higher 
dimension.  Even with these techniques, selecting the 
proper embedding dimension for a particular time series 
seems to be as much art as it is science (Abarbanel, 1995). 
Some more specific techniques are available to help 
answer the second question, finding the individual time 
delays for each dimension.  Zeros or minima of the 
autocorrelation function of the time series have been 
mentioned as useful choices for time delays (Kantz and 
Schreiber, 1997), along with the first minimum of the 
time-delayed mutual information function (Fraser and 
Swinney, 1986).  However, if these delays do not produce 
a useful embedding, little additional guidance is available. 
This paper proposes the use of a binary-string genetic 
algorithm (GA) to search for the dimensionality and 
individual delay values for an embedding that best fits a 
given criterion – in this case, the minimum standard 
deviation of estimates of the radius of the attractor, 
compared to the mean of those radius estimates.  While 
the GA amounts to a solution by trial and error, it 
represents an improvement in that it is an automated and 
directed trial-and-error solution. 

2 CHARACTERISTICS OF THE 
GENETIC ALGORITHM 

A genetic algorithm (GA) (Dumitrescu et al., 2000), 
designed to emulate the natural principles of evolution, is 
an iterative technique for searching a large set of possible 



solutions to a problem for an optimal solution.  In most 
GAs, a population of random solutions is generated, and 
the “fitness” of each solution in the population is 
calculated.  Based on the fitness of each solution, a new 
generation of solutions is created such that the “fittest” 
solutions survive and combine into new possible 
solutions.  Typically, some level of mutation is introduced 
into the new population to help prevent the GA from 
converging to a solution that is only locally optimal.  This 
process is then repeated until a stopping criterion is met 
(e.g., a fixed number of generations, exceeding a fitness 
threshold, or domination of the population by one 
particular solution). 
In a binary-string GA, each solution is represented by a 
series of binary digits, known as a “chromosome”.  After 
decoding each chromosome, evaluating the fitness of each 
solution, and selecting two “parents” to be combined, the 
combination is often performed using a “crossover” 
technique, where a portion of one parent’s chromosome is 
combined with a portion of the other parent’s 
chromosome.  Mutations are usually performed by 
inverting one or more bits within the chromosome. 
The binary-string GA used in this paper was selected 
because a software implementation of the GA was already 
available to the authors.  The GA uses a fixed, 
predetermined population size and number of generations.   
The most dramatic difference from the “standard” GA 
described above is in the method of selecting and 
combining parents. A preset number of the least-fit 
members of the population are not allowed to be selected 
as parents.   A preset number of the most-fit members of 
the population are copied directly into the next 
generation, and in addition can be selected as parents.  
Members in the remaining “middle-fit” portion of the 
population are also able to be selected as parents.  For 
each slot in the new population not occupied by the copies 
of the most-fit members, two parents are selected at 
random (with equal probability) from the set of eligible 
parents, and a byte-wise crossover is performed where 
each byte of the child’s chromosome has a 50% 
probability of being copied from either parent.  Single-bit 
mutations are also placed in the child’s chromosome 
randomly at a preset rate. 
The specific GA implementation was not studied in much 
detail.  This may be an area for future research and 
improvement.  In particular, a more efficient breeding 
strategy may result in more rapid convergence to an 
optimal solution. 

3 THE TIME-DELAY EMBEDDING 
CHROMOSOME 

The chromosome used with the GA is designed to be 
simple to decode into its corresponding time-delay 
embedding.  The chromosome contains a fixed number of 
possible embedding dimensions.  These dimensions are 
combined with a fixed first dimension, which (when not 
rotated as described later) corresponds to x(t), the current 

sample from the time series.  The maximum number of 
possible dimensions is preset by the user.  This represents 
one of the methods of limiting the dimensionality of the 
set of possible solutions. 
The format of the chromosome is shown in Figure 1 
below: 
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Figure 1: The format of the time-delay embedding 

chromosome (without rotation). 
 

Each embedding dimension contains a single “selector” 
bit, which controls whether the dimension is considered 
when the chromosome is decoded into a time-delay 
embedding.  Another seven bits are allocated for the time 
delay value corresponding to that dimension, allowing 
each dimension to contain a delay of between 0 and 127 
samples.  Another eight bits contain a scaling factor along 
that dimension’s axis, ranging from 1/16 to 15 15/16 in 
increments of 1/16.  This allows, for example, a properly 
aligned, oval-shaped, two-dimensional attractor to be 
expanded or compressed along the two embedding axes to 
nearly form a circle, which the fitness function described 
below recognizes as optimal.   
The chromosome generation and decoding routines used 
with the GA may also be configured to allow the time-
delay embedding to be rotated in space.  In the scaling 
example above, the oval-shaped two-dimensional attractor 
needed to be “properly aligned”, i.e., its major and minor 
axes needed to be roughly parallel to the coordinate axes.  
Allowing the GA to search through possible rotations 
allows the GA to rotate a misaligned oval so that it is 
properly aligned, then scale it to be roughly circular, thus 
producing a nearly optimal fitness value. 
A rotation operation affects only two coordinates of a 
point, regardless of the number of dimensions (Burbanks, 
1996).  If rotation is enabled, an additional 8-bit field is 
appended to the chromosome for each possible pair of 
dimensions, resulting in nd(nd-1)/2 possible rotations, 
where nd is the maximum number of dimensions allowed 
in the embedding.  Only those rotations where both 
dimensions in the pair are enabled by their respective 
selector bits are performed.  The 8-bit field allows for 256 
possible rotations in the dimension pair, resulting in 
resolution of approximately 1.4 degrees. The rotation is 
performed by multiplying a transformation matrix by the 
coordinate vector of the data point (Hoggar, 1992).  For 



In Equation 2 above, σd represents the standard deviation 
of the distances, and µd represents the mean of the 
distances.  The standard deviation is scaled by the 
reciprocal of the mean so that the GA does not favor 
smaller attractors over larger ones.  The nd parameter 
represents the number of dimensions, and b is a constant 
bias (≥1) toward a smaller number of dimensions.  The 
bias causes a lower-dimensionality embedding to be rated 
as more fit than a higher-dimensionality embedding that is 
otherwise slightly more fit. This behavior may be 
desirable, for example, when seeking to view an 
embedding in two or three dimensions, or when working 
with the resulting embedding with limited computing 
resources.  The bias causes the GA to add dimensions 
only when the added dimensions result in a fitness 
improvement. Values of b of 1.05 and 1.2 were used for 
the examples in this paper, and appeared to yield good 
general-purpose results.   

example, Equation 1 shows a rotation in dimensions 1 and 
3 of a 5-dimensional point: 
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If rotation is enabled, it is performed before the scaling 
operation.  This was done with the misaligned oval-
shaped attractor in mind: performing the scaling along the 
coordinate axes before the rotation would have made the 
transformation from oval to circle impossible.  There may 
be other cases where performing the scaling first would 
provide a benefit.  Providing for both a pre-rotation and a 
post-rotation scaling may be another possible 
improvement to this technique.   

The fitness function is negative to cause the GA to seek 
embeddings that minimize the relative standard deviation 
in the distance measurements. 

None of the field sizes chosen for this chromosome 
appear to be “magical”, i.e., they can most likely be 
varied to suit an individual application without harming 
the ability of the GA to find a useful embedding.  If a user 
has reason to believe that, for example, a scaling factor 
larger than 16 may be needed in some dimension, the 
chromosome can certainly be modified to allow this.  
Adding multiple selector bits in each dimension, which 
are XOR’ed together to determine whether a given 
dimension is included, may also provide interesting 
results by taking increased advantage of the mutation 
feature of the GA.   

Based on the description above, it is clear that the 
attractor geometry for which this technique is ideally 
suited is a hypersphere.  With a sufficient number of 
noise-free samples, the centroid will be calculated at the 
center of the hypersphere, and thus all samples will have 
an equal distance from the centroid, yielding an optimal 
fitness value of 0.  However, the technique is not 
necessarily limited to attractors that are hyperspheres.  
Many other geometric shapes and real-world attractors 
have roughly uniform radii, as shown in Table 1 below.  
The noise-free fitness values in Table 1 were calculated 
by randomly placing 1,000 points on or near the surface 
of each attractor, and removing the dimensionality bias 
shown in Equation 2.  The noisy fitness values in Table 1 
were calculated similarly, except that random Gaussian 
noise with RMS magnitude 0.1•µd was added to each 
point: 

4 THE FITNESS FUNCTION 
The fitness function is a key component of the GA: it 
controls which members of the population are represented 
in the next generation.  Because the “most fit” members 
are selected most often for reproduction, the GA tends to 
find the maximum of the fitness function over many 
generations (Dumitrescu et al., 2000).  If a minimization 
is needed instead, a simple approach is to make the fitness 
function the negative of the original function. 

 

The fitness function used in this technique assumes that 
all data points lie near an attractor in phase space, and that 
the attractor can be rotated and scaled to produce a 
roughly constant radius in all dimensions.  The GA 
locates the centroid of the data points in phase space, 
calculates the Euclidean distance between each data point 
and the centroid, and then uses statistical properties of the 
distance values d to provide a fitness judgment: 
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Table 2 below shows the two-dimensional embedding 
found by the GA. 
Table 2 below shows the two-dimensional embedding 
found by the GA. 

Table 1: Partial fitness values (-σd/µd ratios) of several 
geometric and non-time-delay real-world attractors. 

   
Dimen-

sion 
Attractor 

Description 
Noise-
Free 

Fitness 

Noisy 
Fitness 

 
2 

 
Circle 

 
-0.0130 

 
-0.0885 

2 Hexagon -0.0510 -0.0869 
2 Square -0.1093 -0.1353 
2 Van der Pol oscillator 

limit cycle  
(Vidyasagar, 1993) r, 1993) 

-0.1723 -0.1723 -0.1849 -0.1849 

3 3 Sphere Sphere -0.0094 -0.0094 -0.0638 -0.0638 
3 3 Cube Cube -0.1229 -0.1229 -0.1386 -0.1386 
3 3 Torus (o.d.=2•i.d.) Torus (o.d.=2•i.d.) -0.2265 -0.2265 -0.2316 -0.2316 
3 3 Lorenz attractor Lorenz attractor 

(Abarbanel, 1995) (Abarbanel, 1995) 
-0.5453 -0.5453 -0.5445 -0.5445 

3 3 Rössler attractor Rössler attractor 
(Frazer and Swinney, 
1986) 
(Frazer and Swinney, 
1986) 

-0.4086 -0.4086 -0.4060 -0.4060 

Table 2: The time-delay embedding parameters found by 
the GA for a noisy sinusoidal time series. 

Table 2: The time-delay embedding parameters found by 
the GA for a noisy sinusoidal time series. 

    
  Dim. 

1 
Dim. 

1 
Dim. 

2 
Dim. 

2 

  
Delay value Delay value 

  
0 0 

  
15 15 

Rotation vs. dim. 1 (radians) N/A 2.90 
Scaling factor 1 0.9375 

 
Overall fitness value 

 
-0.1665 

-σd/µd ratio -0.1156 
 
Figure 2, a plot of the time-delay embedding, shows that 
the GA did indeed find a circular attractor.  The dots in 
the plot represent the time series samples, and the cross 
represents the calculated centroid: 
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The Lorenz and Rössler attractors both exhibit a “folded” 
geometry, i.e., most of the samples fall near one of two 
planes that intersect at nearly right angles.  Because this 
geometry is quite different than the spherical geometry 
that this technique was designed to seek, the fitness values 
for these two attractors are quite low.  These examples 
point out one of the limitations of this technique: it 
searches for a time-delay embedding that best meets its 
goal of a uniform radius between the samples and the 
centroid, even if an attractor with a different geometry is 
responsible for the dynamical behavior of the system.  
However, if a reasonable guess about the geometry of the 
attractor can be made, a different fitness function that 
favors that particular geometry can be used. 

The Lorenz and Rössler attractors both exhibit a “folded” 
geometry, i.e., most of the samples fall near one of two 
planes that intersect at nearly right angles.  Because this 
geometry is quite different than the spherical geometry 
that this technique was designed to seek, the fitness values 
for these two attractors are quite low.  These examples 
point out one of the limitations of this technique: it 
searches for a time-delay embedding that best meets its 
goal of a uniform radius between the samples and the 
centroid, even if an attractor with a different geometry is 
responsible for the dynamical behavior of the system.  
However, if a reasonable guess about the geometry of the 
attractor can be made, a different fitness function that 
favors that particular geometry can be used. 

 

5 RESULTS 5 RESULTS  
Figure 2: Plot of the time-delay embedding found by the 
GA for a noisy sinusoidal time series. 

To illustrate the technique, a simple test pattern was 
devised.  A two-dimensional time-delay embedding of a 
sinusoidal signal should produce a circle if a proper delay 
(for example, ¼ of the oscillation period) is chosen.  To 
test the technique, 1,000 samples of the time series shown 
in Equation 3 were presented to the GA to find an 
embedding with a maximum dimension of 7: 

To illustrate the technique, a simple test pattern was 
devised.  A two-dimensional time-delay embedding of a 
sinusoidal signal should produce a circle if a proper delay 
(for example, ¼ of the oscillation period) is chosen.  To 
test the technique, 1,000 samples of the time series shown 
in Equation 3 were presented to the GA to find an 
embedding with a maximum dimension of 7: 

 
Interestingly, another run of the sinusoidal time series 
with noise recalculated from the same distribution found a 
three-dimensional solution shown in Table 3 and Figure 
3, with rotation and scaling that produce a ring-shaped 
attractor in the three-dimensional phase space:   

2( ) sin
(3)2455
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Table 3: Parameters for a three-dimensional time-delay 
embedding found by the GA for a noisy sinusoidal time 

series. 
 

 Dim. 
1 

Dim. 
2 

Dim. 
3 

 
Delay value 

 
0 

 
25 

 
62 

Rotation vs. dim. 1 
(radians) 

N/A 4.52 5.82 

Rotation vs. dim. 2 
(radians) 

N/A N/A 0.07 .07 

Scaling factor Scaling factor 1 1 3.8750 3.8750 1.5625 1.5625 
  
Overall fitness value Overall fitness value 

  
-0.1742 -0.1742 

-σd/µd ratio -0.1008 
 

 
 

Figure 3: Plot of the three-dimensional time-delay 
embedding described in Table 3. 

 
The three-dimensional result points out another 
characteristic of this technique: noise can cause the GA to 
find a more complex embedding (e.g., higher 
dimensionality or non-intuitive time delay values, 
rotation, or scaling) than might be required for a particular 
data set.   The b parameter in the fitness function can be 
varied to compensate for the effect of noise on the 
dimensionality of the embedding found by the GA.  Since 
this technique does not provide a similar mechanism for 
constraining rotation or scaling, minimizing measurement 
noise makes the GA more likely to find an attractor that is 
based on the actual dynamics of the system instead of the 
noise. 
A more complex test was also presented to the GA, a 
simulation of a system governed by two attractors.  An 

interleaved sinusoidal time series was developed by 
generating a time series using Equation 3 and doubling 
every second x(t) value.  Depending on the time delay 
chosen, an embedding of this series may either separate or 
combine the two attractors.  In this series, a time delay of 
an even number of samples results in an embedding that 
appears as two concentric circles, thus allowing the 
attractors to be separated visually.  A delay of an odd 
number of samples gives an embedding that combines the 
attractors into one shape.  The GA determined that the 
combined attractor had a more uniform radius than the 
union of the two separated attractors, and thus found an 
odd embedding delay: 
 

Table 4: Parameters for a two-dimensional time-delay 
embedding found by the GA for the dual interleaved 

sinusoidal time series. 
 

 Dim. 
1 

Dim. 
2 

 
Delay value 

 
0 

 
13 

Rotation vs. dim. 1 
(radians) 

N/A 3.14 

Scaling factor 1 0.8125 
 
Overall fitness value 

 
-0.3730 

-σd/µd ratio -0.2590 
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Figure 4: Plot of the time-delay embedding described in 
Table 4. 

 
Having produced reasonable results with test data, this 
technique was then applied to several real-world 



attractors.  One example is a time series representing the 
temperature of a room heated with a boiler and radiator.  
The time series is a set of 1,000 samples taken every two 
minutes during a simulation of a nonlinear model of the 
heating system.  The time series was provided to the GA 
with a maximum dimensionality of 7.  The GA reported 
the results in Table 5 and Figure 5: 
 

Table 5: Parameters for a two-dimensional time-delay 
embedding found by the GA for the boiler/radiator time 

series. 
 

 Dim. 
1 

Dim. 
2 

 
Delay value 

 
0 

 
88 

Rotation vs. dim. 1 
(radians) 

N/A 0.61 

Scaling factor 1 5.5 
 
Overall fitness value 

 
-0.5515 

-σd/µd ratio -0.3830 
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Figure 6: Histogram of radii between data points and 
centroid for the boiler/radiator time delay embedding 

described in Table 5. 
 
Another interesting, and potentially lucrative, problem is 
to attempt to produce a model of the price of a stock.  A 
1,263-point time series containing the daily percentage 
price changes in the common stock of General Electric 
Co. between November 27, 1995, and November 24, 
2000, was assembled and provided to the GA to find an 
attractor with a maximum dimensionality of 20.  The 
results, shown in Table 6 and Figure 7 below, are 
essentially a three-dimensional cloud that indicates that 
the GA did not truly find an attractor: 
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Table 6: Parameters for a three-dimensional time-delay 

embedding found by the GA for a stock price time series. 
 

 Dim. 
1 

Dim. 
2 

Dim. 
3 

 
Delay value 

 
0 

 
76 

 
108 

Rotation vs. dim. 1 
(radians) 

N/A 2.63 4.54 

Rotation vs. dim. 2 
(radians) 

N/A N/A 3.02 

Scaling factor 1 12.75 14.75 
 
Overall fitness value 

 
-1.1257 

-σd/µd ratio -0.6514 

 
 

Figure 5: Plot of the boiler/radiator time-delay embedding 
described in Table 5. 

 
In this case, the GA has found an interesting two-
dimensional attractor.  Three lobes appear in the plot, one 
of which is more densely populated than the others.  
While the attractor found by the GA is not circular, a 
dominant radius range does exist: a clear majority (693 of 
the 1,000) of the data points fall within a radius range of 
between 4 and 10 units.  Figure 6 shows a histogram of 
the radii calculated for the data points.  More importantly, 
the attractor does have some potentially useful structure. 

 
 



One final example attempts to find a model for seismic 
activity.   A 1,000-sample time series was taken from the 
east-west, broadband, high-gain sensor at the MA2 
seismograph station at Magadan, Russia, during an 
earthquake of magnitude 6.4 that occurred on July 30, 
2000, south of the Japanese island of Honshu (33.92 
degrees north, 139.28 degrees east) (IRIS web site).  
Because previous investigation by the authors suggested 
that the attractor is likely to be of high dimensionality, the 
dimensionality bias b was relaxed to a value of 1.05 so as 
not to excessively penalize higher-dimensionality 
solutions.  A maximum dimensionality of 20 was set. 
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The GA produced an 8-dimensional solution, summarized 
in Table 7.  The rotations between the eight dimensions 
are omitted for clarity.  Because of the high 
dimensionality, it is impractical to plot the data in the 8-
dimensional phase space. 

 
 

Figure 7: Plot of the stock price time-delay embedding 
described in Table 6.  

 Table 7: Selected parameters for an eight-dimensional 
time-delay embedding found by the GA for a seismic time 

series. 
Because the GA always reports the solution that it found 
to be best, there is no guarantee that the GA’s solution is 
meaningful.  In this case, it clearly is not.  Unfortunately, 
the GA gives little guidance as to why it did not produce a 
meaningful result: perhaps the attractor requires more 
than 20 dimensions to become apparent, or perhaps the 
real attractor in this system has a geometry that is 
significantly different than a sphere.  The higher-
dimensionality case can be tested by allowing a larger 
maximum dimension, although there seems to be a point 
of diminishing returns in increasing dimensionality.  The 
different geometry case can also be tested with a set of 
fitness functions tailored to different attractor geometries.     

 
 Delay 

value 
Scaling 
factor 

 
Dim. 1 

 
0 

 
1 

Dim. 2 7 8.4375 
Dim. 3 19 1.1875 
Dim. 4 24 9.5 
Dim. 5 26 9.625 
Dim. 6 41 10.5625 
Dim. 7 107 6.6875 
Dim. 8 110 6.875 
 
Overall fitness value 

 
-0.6136 

-σd/µd ratio -0.4153 

In some ways, this is a lucky result in that the three-
dimensional view clearly shows that no attractor was truly 
found.  This raises the question of how to detect a failure 
of this technique in higher dimensions, where a plot 
becomes infeasible.  Two possible methods emerge from 
this example.  One is to examine the fitness value of the 
GA’s best solution.  Knowing the fitness value, the 
dimensionality bias b, and the number of dimensions 
found by the GA, the ratio -σd/µd can be back-calculated 
and used as a measure of the uniformity of the attractor 
radius.  This ratio can be compared directly to the values 
shown in Table 1.  Based on the values in Table 1 and the 
examples in this paper, a ratio value of above 
approximately -0.4 tends to suggest that a meaningful 
attractor was found, and a ratio value of below -0.6 tends 
to suggest failure.  Ratio values between these cutoffs are 
probably inconclusive, but may very well indicate success 
with noisy data. 

 
When examining this result, the natural question to ask is 
whether the result is meaningful.  Because of the high 
dimensionality, the simplest tool to help determine this, 
plotting the data in the phase space, is not practical.   
Examining the -σd/µd ratio and applying the benchmarks 
described earlier in this paper provide some guidance.  
The ratio value of -0.4153 falls in the inconclusive range, 
but it is very near the ratio found with the boiler/radiator 
system.  Since the time series was sampled during an 
earthquake, presumably with a fair amount of noise 
present from sources such as seismic wave reflections 
from the earth’s surface, the GA’s result seems to be 
believable.  The dimensionality of 8 also seems plausible, 
based on earlier investigation by the authors that showed 

Another possible method for determining the 
meaningfulness of a result is to examine the scaling 
factors on the various dimensions.  If the scaling factors 
are dissimilar in magnitude, as in the stock price example, 
this suggests that the GA may have maximized the -σd/µd 
ratio with a meaningless combination of rotations and 
scaling.   



no clear or emerging pattern in a number of embeddings 
in two and three dimensions.   
The other tool developed in the stock price example, 
examining the scaling factors on each dimension for 
similarity, tends to lend some believability to the 
meaningfulness of the embedding: six of the eight 
dimensions have scaling factors between 6.6875 and 
10.5625.  The remaining two dimensions with scaling 
factors of 1 and 1.1875 may prove to be unnecessary.  
However, for now, all that can be said about this 
embedding is that it is an interesting candidate for further 
study. 

6 CONCLUSIONS 
Based on the examples in this paper, the GA technique 
appears to be a viable method for identifying appropriate 
time-delay embeddings for certain types of attractors.  
The technique works well when the attractor has a 
relatively uniform radius in phase space.   
The main factor to consider when using this technique is 
that the GA finds an embedding that optimizes its fitness 
function, given the time series provided.  Noise in the data 
can cause the GA to converge to an embedding that is 
more complex than necessary.  In cases where the true 
attractor has a radius that is far from uniform, the GA still 
converges to the embedding that it found gives the data 
the most uniform radius.  In some cases, this embedding 
represents the data as a random jumble of points, yielding 
no useful information.  This paper discusses some 
techniques to help determine if this has occurred on a 
given data set, but at some point the user must decide 
whether to pursue higher dimensionality, different 
attractor geometries, or an entirely different technique. 
The area of alternate attractor geometries appears to be an 
interesting area for future research.  To change this 
technique to operate on a different attractor geometry, a 
new fitness function that detects that particular geometry 
is needed.  It is even conceivable that the GA could select 
among a number of geometries for a given embedding, 
assuming that the fitness functions can be balanced so that 
a particular fitness value represents a the same level of 
fitness across the different geometries. 
Another interesting area for future research is 
optimization of the GA itself.  Faster convergence and 
speed optimization translate directly to decreased time to 
reach a result.  The GA used in this paper is a simple, 
generic GA; it is likely possible to tailor the GA for faster 
convergence in this application. 
While this technique is certainly not a “silver bullet” to 
find the optimal time-delay embedding for any time 
series, it is another tool that, in many circumstances, can 
provide useful results. 
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