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» Reconstructed Phase Space (RPS)
Based on Takens’ delay embedding theorem [F. Takens’, 1980]. L
Time series,

X = Xy, n=1..N

Time delay embedding, | ConCIUSion
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X =%y Xp—z « Xn_(a-1) | Reconstructed Gaussian

where 7 - time lag and d - embedding dimension
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» The proposed approach achieved 100% accuracy on individualized model and above
90% accuracy over 11 activities.

» Outperformed existing techniques using 1 axis acceleration.

» Reduces computational and memory complexity by reducing data from 6-7 time
series to 1 time series.

Development of the Human Activity Recognition as a Service in the application
framework.

Build RPS using the
same  time-lag and
embedding dimension.
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Likelihood score for each
GMM using EM algorithm.
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Maximum

» Gaussian Mixture Model (GMM)
A parametric probability density function. Weighted sum of M Gaussian density
function.

Classified activity based
on maximum likelihood.
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