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Using Smart Meters to Learn
Water Customer Behavior
Michele R. B. Malinowski and Richard J. Povinelli

Abstract—This article addresses the need to divide a population
of water utility customers into groups based on their similarities
and differences, using only the measured flow data collected by
water meters. After clustering, the groups represent customers
with similar consumption behavior patterns and provide insight
into “normal” and “unusual” customer behavior patterns for in-
dividually metered water utility customers within North America.
The contributions of this work not only represent a novel work, but
also solve a practical problem for the utility industry. This article
introduces a method of agglomerative clustering using information
theoretic distance measures on Gaussian mixture models within
a reconstructed phase space, designed to accommodate a utility’s
limited human, financial, computational, and environmental re-
sources. The proposed weighted variation of information distance
measure for comparing Gaussian mixture models emphasizes those
behaviors whose statistical distributions are more compact over
those behaviors with large variation and contributes a novel ad-
dition to existing comparison options. We conduct several experi-
ments with both synthetic and real data to show the reasonableness
of the clustering results and their consistency.

Index Terms—Artificial intelligence, artificial intelligence for
technology management, data analytics, environmental issues in
technology management, smart services.

I. INTRODUCTION

THIS article addresses the need to divide a population of
water utility customers into groups using only the mea-

sured flow data collected by water meters. We introduce a novel
method of agglomerative clustering using information theoretic
distance measures on Gaussian mixture models (GMMs) within
a reconstructed phase space (RPS). The proposed weighted
variation of information (wVI) distance measure for comparing
GMMs places emphasis upon those behaviors whose statistical
distributions are more compact over those behaviors with large
variation.

Since 2011, more than 25% of the U.S. has coped with drought
conditions. In California, one of the most severely affected areas,
over 45% of the state has experienced drought conditions over
the same period, increasing to over 90% for 2016 [1]. In response
to the long-term drought, municipalities have responded with
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conservation ordinances introducing severe restrictions of water
use including irrigation system flow limits, watering date/time
restrictions, and punitive monetary fines for violations [2]. These
restrictions and conservation projects require timely water con-
sumption data and processing to enforce the ordinances, as
well as educational and targeted communication with the water
consumers.

The water utilities need an easy method to identify which
customers’ behavior is within the accepted normal patterns,
and which customers’ behavior is wasteful, fraudulent, or in
violation of regulations. The unsupervised clustering algorithm
presented in this research fills the need for grouping customers
by behavior. This assists the utility to determine customers
needing additional scrutiny and those that do not. The output of
this algorithm is a hierarchical diagram grouping all customers
compared with each other using an information-theoretic dis-
tance measure based on the temporal behavior patterns observed
within the collected flow measurements.

The unsupervised clustering algorithm described in this article
addresses the need to divide a population of water utility cus-
tomers into groups based on their similarities and differences,
using only the measured flow data collected by water meters.
Two motivations drive this article—a commercial motivation to
provide useful segregation of customer data, and an academic
motivation to create a new method of comparing two time series.
The agglomerative clustering method accommodates the practi-
cal limitations of a utility’s finances, resources, or staffing. This
allows the customer data to be segmented into groups for tar-
geted marketing, conservation campaigns, or incentive programs
based on the water usage data. As time-of-use billing is not yet
widespread in water systems, the consumption volume, patterns,
and flow rates are more critical to identify groups of customers.
The academic contribution of this work, the wVI distance
measure, presents a novel component-weighting scheme for
emphasizing components of GMM with compact distributions.

The remainder of this article is organized as follows.
Section II describes the water supply industry and related work.
Section III explains the method for clustering customers based
on their water consumption. Section IV describes the data used
for our experiments. Section V presents the experiments and
results. Finally, Section VI concludes this article.

II. BACKGROUND

While over 15 million American households rely upon private
well sources for water [3], the remaining 110 million households
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are connected to public water supplies. Likewise, most commer-
cial and industrial applications use public water supplies. Public
and municipal water utilities must carefully monitor the water
they provide for public safety, billing, and resource management.

Over the last few decades, water utility companies have begun
installing automated meter reading (AMR) systems to further
simplify the process of meter reading, decrease manual labor,
and reduce transcription errors within collected data [4]. These
systems allow more frequent reporting of measured demand
at the individual customers, while simultaneously reducing the
manual effort of physically looking at each meter to record the
volume measured. In 2018, the American Water Works Associ-
ation reported 37% of utilities in North America have fully im-
plemented AMR systems, and another 24% are in the process of
doing so [5]. Many of the AMR systems support quarter-hourly
reads, but battery limitations and data-related costs constrain the
data collection to hourly or daily reads. It is from these AMR
systems that the data for our proposed algorithm comes.

While there is little work in customer water flow clustering,
other research explores clustering of energy customers using
smart meter data. Panapakidis et al. [6], [7] implement clustering
of electric smart meter data. As opposed to creating models
such as our algorithm, their work clusters the daily typical
load profiles within a customer’s dataset. Representatives of
those clusters are used to complete the second stage clustering
across the population of all customers. Their work illustrates the
complex problem of identifying the optimal number of clusters
in a diverse dataset. In contrast to the Panapakidis work, the
clustering method presented here does not require a definition
of an optimal number of clusters.

Bose and Chen [8], [9] track changing cluster populations
over time using fuzzy c-means algorithms. Their work focuses
upon migratory patterns of cellular phone customers, for the
purposes of tracking dynamic market demands and customer
retention. Their data exhibit not only customers who migrate
from one cluster within the data to another, but also the formation
of new clusters and dissolution of others as new behavior patterns
emerge within the population.

A related problem arises in clustering music. Genre classifi-
cation is not an identical problem, as the entirety of the work
is available at time of classification. The whole song is already
produced and recorded, but similarity exists in the approach to
first model the music, and then compare the model with others
during the classification step. Logan and Salomon [10] create
models using the audio spectrum of the composition and then
cluster multiple works using earth movers distance. Jensen et al.
[11] create GMMs from the Mel frequency coefficients within a
work and then cluster those models based on three different
distance measures—Kullback–Leibler distance, earth movers
distance, and normalized least squares.

Another popular algorithm, spectral clustering, simplifies the
problem by reducing the dimensionality in a different manner.
First, the similarity matrix is constructed as a representation of
the commonalities between every pair of data samples. Then, a
graph Laplacian is computed from this similarity matrix. The
clustering operates on eigenvectors from this graph Laplacian
matrix and some predetermined clustering algorithm such as
k-means or c-means. Spectral clustering algorithms vary on

the specific details of constructing the graph Laplacian and the
clustering step, but the same framework applies [12]–[14].

Statistical modeling of biological time-series has been applied
to electrocardiogram data for classifying specific heart rhythms
[15], [16]. This work casts the time-series signals into an RPS
and further applies GMMs to represent the attractor within the
RPS. These models then classify a new time-series as a partic-
ular heart rhythm, aiding in medical diagnosis. Our clustering
method used to group water meter time series is similar to that
of [13] and [17]. We extend their work by clustering different
customer models using the VI distance measure.

Some existing research classifies water usage based on me-
tering data. Laspidou et al. [18] use quarterly water billing
information and self-organizing maps to cluster customers based
on consumption. Willis et al. [19] and Cardell–Oliver [20]–
[22] investigate fixture-level consumption patterns to identify
specific end uses of water in a location using high-resolution
metering. Other research focuses upon partitioning a utility’s
entire water distribution network into the optimal district me-
tered areas for processing groups of customers sourced by the
same supply mains [23], [24]. Related research using smart
meter flow data has produced outlier detection and forecasting
algorithms [25]–[27] and leakage detection methods [28]. In
contrast to this existing water utility research, our article focuses
upon clustering similar customers based on temporal behavior
patterns using only the hourly flow measurements recorded in
the BEACON AMA system.

III. METHOD

Our approach transforms the water meter time series into an
RPS. A GMM is learned on this space. Next an ellipsoid hull
is computed to model each GMM component, and a geometric
tessellation of the hull is calculated within the RPS. To compare
two customers, the variation of information (VI) distance is
calculated between the hulls of each customer. The VI distance
between customers is then used to build an agglomerative cluster
hierarchy.

When comparing large sets of raw time-series data, the com-
putational and storage space requirements quickly become un-
manageable. Reducing the large set of individual measurements
to a small set of model parameters for each customer makes the
comparison more manageable. One way to study these systems
is to cast the time series into an RPS such that any location within
the space identifies the system state at that moment. Phase space
embedding is an established method to represent a system in a
vector space chosen to illustrate the dynamics of the original
system [29].

A GMM is learned on the RPS. An ellipsoid hull is then
computed to model each GMM component for a customer, and
a geometric tessellation of the hull is calculated within the RPS.
The volume of this ellipsoid hull estimates the entropy of this
component of the GMM. A summation of all GMM component
hull volumes estimates the entropy of the customer model. If a
customer has perfectly consistent water consumption behaviors,
the associated GMM component volumes will be small. As
variations in the consumption behavior or temporal patterns
increase, the GMM component volumes will also increase.

Authorized licensed use limited to: Marquette University. Downloaded on September 04,2020 at 20:45:20 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALINOWSKI AND POVINELLI: USING SMART METERS TO LEARN WATER CUSTOMER BEHAVIOR 3

Fig. 1. Recorded hourly consumption values for a residential customer.

VI is a measure of how much information is lost when
combing two groups as opposed to keeping the groups separate.
Unlike mutual information (MI), VI is a true metric, satisfying
the triangle inequality and allowing comparison of clusters with
different populations. The VI corresponds to the nonoverlapping
volume of two convex hulls in the RPS. If the two hulls are
coincidental, the VI is small, and combining the two into a new
cluster loses very little information. Conversely, if the two hulls
are entirely separate, the VI is large and reflects the large loss
of unique information if they are combined. Hulls that overlap
partially or touch will fall somewhere in between these two
extremes.

Two customer models are compared to each other by com-
puting the points of intersection of the GMM component hulls.
When the surface of one hull is located within the enclosed
volume of a second hull, an intersection is present. Consider
the intersection of a large and a small ellipsoid. A boundary for
the intersecting volume is created by first identifying the set of
points on the surface of the large ellipsoid that exist within the
volume of the smaller ellipsoid. Then, we identify the reciprocal
set of points on the surface of the small ellipsoid that exist within
the volume of the larger. A new convex hull is created from the
combined set of intersecting points.

Since the summation of all model component volumes en-
closed within a hull estimates the entropy of the customer
model, the summation of all the intersecting volumes between
two customer models is the estimated MI between those two
customer models. The VI is then the sum of all volumes from
both models subtracting double the volume of the MI. The VI
distance is then used to cluster customers. We avoid the problem
of determining the number of clusters by using an agglomerative
cluster hierarchy. Then post hoc the number of clusters can be
selected accommodating the utility’s resource limitations.

The remainder of this section presents the data normaliza-
tion and cleaning process. Then the details of the method are
presented. This includes the definitions of VI, wVI, RPS, and
GMM.

A. Cleaning and Normalizing Data

The algorithm is not designed to accommodate large gaps
in the data. During the data cleaning process, the longest
continuous set of hourly measurements without any missing,
aggregated, or negative flow data is selected for evaluation,
discarding other data. The BEACON AMA system, which is
used for data collection, can disaggregate values naïvely, but it
stores an internal flag for those records, permitting the detection
and removal of disaggregated data that would otherwise affect
the overall performance of the method.

Water meters in residential properties sit idle for many hours
of the day while the occupants are at work or asleep, resulting
in most recorded data indicating zero volume. Likewise, many
commercial meters sit idle during the evening or early morning
hours when the business is closed. Fig. 1 shows a few days of
recorded hourly consumption values for a residential customer.
The periods indicating zero consumption coincide with time
spent sleeping or at work during the weekdays. Fig. 2 shows a
histogram of the recorded values, as well as the overall median
and nonzero median, which are described below.

The zeros themselves are not unusual, but the number of zero
measurements can create computational problems. Traditional
normalization by median or mean is deceptively small, due to
the large quantity of zeros in this data; or erroneous, due to
divide-by-zero errors. Instead, the median of nonzero values is
used—this is the number associated with the 50th percentile
of consumption for all nonzero consumption records. Using
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Fig. 2. Histogram of values for a residential customer.

the time series X = {. . . , xt−τ , xt, xt+τ , xt+2τ , . . .}, take the
median of the set ofX, excluding values inX equal to zero. Then
MedX �=0 = Median(X ∩ 0). MedX �=0 is the nonzero median.
Dividing the original data by MedX �=0 produces the normalized
data: Xnormalized = X/MedX �=0.

Normalizing the recorded values for each customer in this
manner allows comparison between customers of different size
(number of household members or size of business). The com-
parison then identifies common behavioral patterns, regardless
of the volume of the consumption pattern.

The next section describes the process of converting a time
series to an RPS and using a GMM to model the RPS.

B. Gaussian mixture models (GMMs) in reconstructed phase
space (RPS)

One way to study customer flow is to cast the time series into a
vector space such that any location within the space identifies the
system state at that moment [30]. Phase space embedding [30],
[31] is an established method to represent a system in a vector
space chosen to illustrate the dynamics of the original system
most clearly. Fig. 3 illustrates the embedding of a few data points
as an example. Two groups of repeated behaviors are shown,
red dots indicate behaviors occurring on a 24-hour schedule,
and blue dots indicate behaviors occurring on a weekly, 168-
hour schedule. The embedding process, indicated by the colored
arrows, shows how groups form within the vector space with
axes corresponding to 0-, 24-, and 168-hour time lags.

When the time series is embedded into the phase space,
a single point is defined as a vector Y of points from the

original series X each separated by time lags Tm to produce
the dimensions within the space. The subscript m indicates
the particular dimension associated with that lag Tm: Y =
[xt+T1

, xt+T2
, . . . , xt+Tm

]. These vectors are plotted in the
newly defined phase space as a topological embedding of the
original system [31].

A GMM is learned over the RPS, where a GMM of k com-
ponent Gaussians in d dimensions is

X̂ =

k∑

i=1

(Nd (μk,Σk))i. (1)

The central location vector μk = [μ1, μ2, . . . , μd] describes
each Gaussian component along with a d× d covariance matrix

Σk =

⎡

⎢⎢⎢⎣

σ11 σ12 · · · σ1d

σ21 σ22 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σdd

⎤

⎥⎥⎥⎦ . (2)

The GMM means and variances are estimated using expec-
tation maximization [32], where the initial GMM centers are
generated using k-means clustering. The initialization process is
stochastic, yielding different GMMs in each trial of the process.
The consistency of the resulting GMMs is evaluated in the
experiments and results section of this paper.

C. Variation of Information

To measure the similarity of two customers’ GMMs the VI
measure is used. VI is a measurement of how much information
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Fig. 3. Embedding from a time series into a vector space forces groups of points to form based on repetitive behaviors corresponding to the time lag.

is lost when combing two groups as opposed to keeping the
groups separate. Unlike MI, VI is a true metric [33], satisfying
the triangle inequality and also allowing comparison of clusters
with different populations. We chose VI as a distance measure
because of these desirable properties.

MI describes the amount of information known about one
probabilistic model through knowledge of a second probabilistic
model. MI is the information shared by the two models, defined
as

MI (A,B) =
∑

i

∑

j

P (ai, bj) log

(
P (ai, bj)

P (ai)P (bj)

)
. (3)

The models A and B each contain one or more components,
ai and bj. MI is illustrated in Fig. 4 and is used to compute the
VI [14], [34], [35].

The VI distance between two sets is the sum of unique
information that would be lost if the two sets are combined.
With the MI as defined by (3) and individual entropy of each set

H (A) =
∑

i

P (ai) log2 [P (ai)] and

H (B) =
∑

j

P (bj) log2 [P (bj)] (4)

the nonintersecting parts of all sets are collectively

V I (A,B) = H (A) +H (B)− 2 [MI (A,B)] . (5)

Fig. 4. Venn diagram describing relationships between entropy, MI, and VI.

The relationships between the individual entropy of each set,
the intersection of the two sets (MI), and the VI are clarified in
Fig. 4 Venn diagram.

D. Weighted Variation of Information

Adding component weighting to the VI yields better cluster-
ing consistency. This section describes the wVI variant of VI.
Let the average of the trace of the covariance matrix from (2) be

σavg =

∑d
i=1

1
σdd

d
. (6)
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Fig. 5. Visualizing MI (intersecting volume) of two customer models.

Then the weight for the kth GMM component described in
(1) is

wk =

1
σkavg∑k
i=1

1
σiavg

. (7)

Finally, apply these weights when computing the entropy,
MI, and VI distance between two cluster models (cluster A and
cluster B)

wH (A) =
n∑

i=1

H (Ai)wAi (8)

wH (B) =

m∑

k=1

H (Bk)wBk (9)

wMI (A,B) =

m∑

k=1

n∑

i=1

MI (Ai, Bk)wAiwBk. (10)

And the wVI distance is

wV I (A,B) = wH (A) + wH (B)− 2 [wMI (A,B)] . (11)

This weighting allows the clustering algorithm to emphasize
smaller cluster components, those with a tighter standard de-
viation, and reduces emphasis of the components with a large
average standard deviation.

E. Estimating VI

The VI distance metric describes the amount of information
lost when two models are combined into a new model. As an
example in three dimensions, Fig. 5 illustrates that the VI corre-
sponds to the nonoverlapping volume of two convex hulls. If the
two hulls are coincidental, the VI is small, and combining the

two into a new cluster loses very little information. Conversely,
if the two hulls are entirely separate, the VI is large and reflects
the large loss of unique information if they are combined. Hulls
that overlap partially or touch will fall somewhere in between
these two extremes.

An ellipsoid hull is computed to model each Gaussian mixture
component for a customer, and a geometric tessellation of the
hull is generated within the RPS. The volume of this ellipsoid
hull

Vk =

(
4

3
π

) d∏

j=1

rj (12)

estimates the entropy of this component of the GMM, with rj
being the radius of the ellipsoid for any axis. The volume is
computed based on the Qhull method [36]. A summation of all
GMM component hull volumes

Ĥ =

k∑

i=1

⎛

⎝
(
4

3
π

) d∏

j=1

rj

⎞

⎠

i

(13)

estimates the entropy of the customer model. If a customer has
perfectly consistent water consumption behaviors, the associ-
ated GMM component volumes will be small. As variations
in the consumption behavior or temporal patterns increase, the
GMM component volumes will also increase.

Two models are compared to each other by computing the
points of intersection of the GMM component hulls. Fig. 5
shows a simple model with spheres, illustrating the intersection
between the two hulls as a solid volume. Since the summa-
tion of all model component volumes enclosed within a hull
estimates the entropy Hof the particular customer model, the
summation of all the intersecting (filled) volumes between two

Authorized licensed use limited to: Marquette University. Downloaded on September 04,2020 at 20:45:20 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALINOWSKI AND POVINELLI: USING SMART METERS TO LEARN WATER CUSTOMER BEHAVIOR 7

customer models is the estimated MI between those two cus-
tomer models. The VI is the sum of all volumes from both
models (A and B), subtracting double the volume of the MI.
Thus V̂ I(A,B) = Ĥ(A) + Ĥ(B)− 2[M̂I(A,B)]. To perform
hierarchical clustering, two models need to be joined. This is
done by computing the hull of the combined customers’ GMMs.

IV. WATER FLOW DATA

Research data have been drawn from the cloud-based Badger
Meter, Inc. BEACON Advanced Metering Analytics (AMA)
system. This database of hundreds of utilities maintains his-
torical records for meters with equipment details, measured
flow, time stamps, and status information throughout the life
of the meter. Hundreds of thousands of endpoints are tracked
daily in the system. Unique identifiers for the meter, radio
endpoint, and customer label each record within the system,
but have been anonymized for this research, and no personally
identifiable information is presented here. All records are used
with permission from their respective owners.

The source data used in this study comprise a group of 99
m from a Midwestern utility with approximately four years of
historical records archived within the BEACON AMA system.
The utility was selected due to the longevity of the records and
the approval for research purposes by both the company and
utility. Experiments and examples using a single customer have
been drawn from this collection as well. For this research, all
customers are assumed to have resided in their homes for the
entirety of the sample period, with no changes in ownership of
a property. This is a naïve approach, and future work should
investigate methods to identify changes related to ownership or
commercial usage of a property.

All collected water records for this study have a 1-hour read-
ing interval. Data collected from the BEACON AMA system
includes the flow volume as well as status alarms from the meter,
radio, and collector. These status alarms may include continuous
flow, no reported flow, naïve disaggregation, and communica-
tion errors. Data with naïve disaggregation and communication
errors are excluded from the study, while those with continuous
flow and no reported flow are included. Only the recorded flow
volume and time stamps are preserved as inputs to the clustering
process. The other status alarms regarding flow are not used.

V. EXPERIMENTS AND RESULTS

Unsupervised clustering operates without any data labels to
confirm the results. Thus, there is no ground truth. To evaluate the
cluster method, we look at the behavior of various types synthetic
data, including phase shifts, simulated leaks, and randomization
of the time series, to evaluate the effectiveness of the method.

Further evaluation is done on real customer data, where we
look at consistency of the results. Consistency is used here to
describe the stability of a particular outcome when the same
data are clustered multiple times. Recall the stochastic nature
of learning a GMM. For a clustering method to be valuable
to utilities, the cluster populations must remain stable if the
underlying behavior has no changes. This is determined by
stability of individual customer cluster assignments with respect

to other individuals and is discussed in the literature as cluster
membership or migration of individuals within the data [8],
[9], [37], [38]. The wVI distance shows consistent clustering
results when run on the same original data multiple times, using
a new GMM for each trial. Even the customers showing the
most volatile placement and those customers with the furthest
distance from the remainder of the data remained consistent.

A. Evaluation Using Synthetic Data

Despite the lack of labeled data, unsupervised clustering algo-
rithms must still be tested. One approach is to create synthetic
data with known labels as a substitute for identifying specific
groups within the dataset. As the customer-grouping problem
does not have specific labels without the reference to other
customers, various data processing methods create synthetic
customers who will be assigned “near” and “far” distances
from their source data. Starting with actual customer data, we
manipulate the individual hourly meter readings to represent
customers that have similar behavior, different behavior, and
leaks. Descriptions of the individual customer data used in all
synthetic experiments are provided in Table I.

1) Synthetic “Similar” Customers: Shifting the entire time
series forward or backward in time creates synthetic similar
customers. This is equivalent to taking all the recorded meter
data from a household and changing the time—instead of waking
at 0745 and showering, the household now wakes at 0545. All
behavior maintains the same volumes and temporal patterns.
These customers will appear nearly the same when plotted
in the RPS, as the method extracts behavioral time patterns,
not specific times of use. The VI distance of these synthetic
similar customers will be very close to the original customer.
Fig. 6 illustrates the synthetic customer (orange) generated from
the original customer data (blue) by shifting the time axis by
approximately 30 h without changing any of the hourly flow
values.

The results of clustering synthetic similar customers show a
short join distance between the donor customer and the synthetic
generated customers. Fig. 7 is a dendrogram illustrating the
hierarchical clustering. To select the number of clusters, the
dendrogram is cut at the join distance. If we want two clusters,
we would cut at a VI distance of 1000. Alternatively, if we
wanted three clusters, we would cut at a VI distance of 500.
Fig. 7 illustrates clustering with four synthetic customers, all
generated from the Customer 1 dataset. The labels indicate the
type of operation used to create the synthetic data. Customers
002—005 are actual customers from collected data.

2) Synthetic “Different” Customers: Creating dissimilar
customers requires changing the temporal behavior patterns
within the recorded meter data. The simplest method is to draw a
random permutation from the existing hourly data records, as il-
lustrated in Fig. 8. Repeating this process multiple times creates a
group of random customers with the same recorded consumption
volumes as the original customer, but no discernable schedules
associated with the time of day or day of week. Within the
RPS, these random permutations have no obvious structure. In
the hierarchical clustering, these three random permutations are
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TABLE I.
CUSTOMER DESCRIPTIONS FOR SYNTHETIC CUSTOMERS EXAMPLES

Fig. 6. Generating a synthetic “similar” customer through temporal shift.

expected to have small VI distances to each other, but large
VI distances to the original customer who has daily or weekly
behavioral patterns.

As the name implies, synthetic different customers tend to
be grouped randomly far from the donor dataset. Fig. 9 shows
these results. One of the random permutation synthetic meters
is grouped near to the donor meter, while the other two are
grouped further away. These results are not surprising, as random
permutations occasionally form similarities that resemble the
source. Descriptions of the individual customer data used for
Fig. 9 are provided in Table I.

3) Synthetic “Leak” Customers: In the water industry, a leak
is any unintended loss of water from the pressurized distribution
system [39]. While much of the focus in the water industry has
been on distribution network leakage [28], [40]–[43], consumer-
side (after the meter) leakage is important to the individual
residents and commercial accounts, as they must pay for the
lost water and the maintenance caused by water damage [40],
[44]. Leaks may occur when a mechanical failure has occurred
in a fixture or pipe, such as a leaky valve on a commode, a
failed weld on a pipe joint, or a worn seal on a faucet. Human
error may also appear as a leak from the perspective of measured
flow—forgetting to turn OFF an irrigation system. Due to the low
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Fig. 7. Clustering of four synthetic similar customers and five actual customers.

Fig. 8. Generating a synthetic “different” customer through random permutation of hourly flow measurements.

Fig. 9. Clustering of three synthetic different customers generated through random permutations of the time series, with six actual customers.
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Fig. 10. Generating a synthetic “leak” customer by adding a fixed flow volume for a random duration.

Fig. 11. Clustering of two customers with synthetic leak events and six actual customers.

probability of detection, small volume leaks may run for weeks
or months before repair, contributing to the total volume lost.

To test the ability of the clustering algorithm to separate leaks
from typical behaviors, synthetic leaks are created by choosing a
duration the leak is present and a volume per hour of the recorded
leak flow. At a random time, the leak begins, and the leak volume
is added to every hourly data point for the duration, as illustrated
in Fig. 10 for a very short duration leak (blue) compared to
original customer data (gold). This assumes a fixed-volume
leak, which is not entirely accurate. Future improvements to
this algorithm should represent more realistic leaks—a small
initial flow rate, increasing over time, sometimes progressing to
a rupture with high flow rate [39].

The synthetic leak customers have been generated from Cus-
tomer 001 by creating either a small volume of 0.75 gallons

per hour for a duration of 500 consecutive hours or a medium
volume of 2.3 gallons per hour for 200 consecutive hours. This
does not imply leaks follow these volumes and durations but
provided a case for supporting future work to investigate these
results. Fig. 11 illustrates the output of the clustering algorithm
for the leak customers as compared to six actual customers,
including the donor data. The medium leak of 2.3 gallons has
been grouped much further from the original customer than the
small leak. Descriptions of the individual customer data used for
Fig. 11 are provided in Table I.

B. Evaluation Using Real Customer Data

The section describes experiments and results on 99 real
customers. Fig. 12 illustrates ten runs of the clustering algorithm
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Fig. 12. Consistency experiment results using wVI distance—consistent customers.

Fig. 13. Consistency experiment results using wVI distance—inconsistent customers.

for the most consistent customers. The six most consistent cus-
tomers are highlighted in color. Here we see that the customers
are very consistent in how they are joined across runs. For ex-
ample, customer 095 (yellow) is joined consistently and quickly
with customer 004 (green). This indicates that customer 095
and customer 004 have similar consumption patterns, and can
be treated as a group for marketing, incentive, and conservation
programs. Having a consistent algorithm able to segment the
customers by usage allows utilities to focus their resources upon
other aspects of the business while still allowing for communi-
cation and outreach tailored for the different use cases. Another
example is customer 017 (blue) is always the last customer to
be joined with a large wVI distance. Customer 017 is likely an

outlier and worth investigating further, and treated individually
for customer contact and targeted programs to accommodate
their unique use case within this group.

The least consistent customers are highlighted in Fig. 13.
As Fig. 13 shows clearly, using the wVI distance measure
for clustering the GMMs has low volatility of all individual
customers across many trials. This improves the consistency
seen when running the clustering multiple times with the same
data, and reduces the volatility caused by random differences
in the GMMs. For a practical application, the repeatability of
results is critical to performance. A utility must be confident the
same data produces nearly the same clusters, regardless of the
randomness within the models.
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VI. CONCLUSION

In this section, we summarize our method, discuss the results,
and propose future work. As data were collected from water
meters, the measurements of flow in gallons were recorded at
hourly intervals. The records were stored as time series entries in
the Badger Meter, Inc. BEACON Advanced Metering Analytics
system. Prior to any clustering, the data required preprocessing
to eliminate anomalies and errors that would invalidate the clus-
tering results. The data also were normalized per customer by
the nonzero median value, leaving only the behavioral patterns
and relative magnitude of flow.

Upon completion of the preprocessing step, dimensional re-
duction was performed using a GMM of the data within an RPS
with time lags of 0, 24, and 168 h. The purpose of the RPS was
to generate areas within the space related to daily and weekly
habitual water consumption behaviors. The GMM reduced the
space required to store a representation of a single meter and
allowed the direct comparison of multiple meters with different
quantities of historical data.

Following the dimensional reduction and preprocessing, the
hierarchical clustering process could begin. The wVI distance
measured the distance between two customers GMMs. Cus-
tomers were combined using a hull-based approach. Distance
measures were defined and compared, with supporting examples
to illustrate advantages and shortcomings.

Two sets of experiments were performed—one using syn-
thetic data and the other real customer data. The synthetic data
experiments showed expected results, while the real customer
data showed consistency across runs. To judge the veracity of
the results, we had evaluated two sets of data. The first was seen
in Fig. 7, 9, and 11. We had designed simulated customers which
should cluster in an expected way. These figures showed that our
method does cluster them as expected. The second was seen in
the consistency of the clustering in Fig. 12 and 13.

This article could be expanded through enhancements to
pre and postprocessing methods, exploring the RPS further,
identification of evolutionary customer behavior, and practical
improvements for commercial application. Additionally, the
wVI distance measure could be generalized further for more
flexibility in applications. The data cleaning implemented in this
article extracted the longest consecutive set of measurements
with no gaps, disaggregated records, or negative values. This
brute-force approach simply excluded data that would cause
the clustering method to crash. A more robust method would
identify the anomalies and modify the clustering method to
accommodate them. The customer model currently stored only
a single time series as input to generate the model. A different
approach could accommodate multiple, nonconsecutive time
series to accommodate large gaps in the recorded data. This
would involve making several initial GMMs for a customer,
one for each time series segment. The collection of submodels
would need to be combined into one master-model used for
clustering among all customers, weighting the contribution to
the master by the amount of data used to create that particular
submodel.

In another implementation, the preprocessing of large gaps
in the data may include disaggregating the sum of consump-
tion over the missing time. The system would determine the
expected value during the missing periods, based on previously
collected data. For instance, the weekday expected value pattern
composed of two Gaussian distributions could be used as the
function to scale the known missing volume. This pattern is
unique to every customer and day types (day of week, weekday,
weekend, or other schedules). Once the scaled expected values
are recreated, the disaggregated data can be entered into the
former gap in the time series. This will not provide additional
insight in the model (creating a model from itself is moot) but
will allow the data system to handle a single continuous time
series rather than several smaller time series. The advantage
will be simplified implementation, data storage, and handling of
the data by the program compared to the previous suggestion of
storing many time series individually for one meter.

This article contributed a method for processing water meter
time series data as well as a novel approach to weighing compo-
nents within a model. The method of unsupervised hierarchical
clustering using information-theoretic distance measures was
flexible enough to accommodate different numbers of clusters
as the individual application requires and needs no training set of
labeled customers to determine which individuals have similar
behavior to each other. While the data were taken only from
one utility, the methods could be applied to other systems with
hourly AMR data collection. Findings were tied to the usage
patterns of individuals, rather than geographical location or
size of utility. These advantages make the method appropriate
for implementation in water utilities where resources of time,
finances, equipment, or staff are limited. The wVI distance
measure presented here improved the clustering consistency to
engender confidence in the results, with customers assigned sim-
ilarly throughout multiple experiment trials. The wVI focused
on flow event behaviors with a tight variation in time and volume
and relies less upon behaviors that vary widely from day to day.
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