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Using Smart Meters to Learn
Water Customer Behavior
Michele R. B. Malinowski and Richard J. Povinelli

Abstract�This article addresses the need to divide a population
of water utility customers into groups based on their similarities
and differences, using only the measured �ow data collected by
water meters. After clustering, the groups represent customers
with similar consumption behavior patterns and provide insight
into �normal� and �unusual� customer behavior patterns for in-
dividually metered water utility customers within North America.
The contributions of this work not only represent a novel work, but
also solve a practical problem for the utility industry. This article
introduces a method of agglomerative clustering using information
theoretic distance measures on Gaussian mixture models within
a reconstructed phase space, designed to accommodate a utility�s
limited human, �nancial, computational, and environmental re-
sources. The proposed weighted variation of information distance
measure for comparing Gaussian mixture models emphasizes those
behaviors whose statistical distributions are more compact over
those behaviors with large variation and contributes a novel ad-
dition to existing comparison options. We conduct several experi-
ments with both synthetic and real data to show the reasonableness
of the clustering results and their consistency.

Index Terms�Arti�cial intelligence, arti�cial intelligence for
technology management, data analytics, environmental issues in
technology management, smart services.

I. INTRODUCTION

THIS article addresses the need to divide a population of
water utility customers into groups using only the mea-

sured flow data collected by water meters. We introduce a novel
method of agglomerative clustering using information theoretic
distance measures on Gaussian mixture models (GMMs) within
a reconstructed phase space (RPS). The proposed weighted
variation of information (wVI) distance measure for comparing
GMMs places emphasis upon those behaviors whose statistical
distributions are more compact over those behaviors with large
variation.

Since 2011, more than 25% of the U.S. has coped with drought
conditions. In California, one of the most severely affected areas,
over 45% of the state has experienced drought conditions over
the same period, increasing to over 90% for 2016 [1]. In response
to the long-term drought, municipalities have responded with
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conservation ordinances introducing severe restrictions of water
use including irrigation system flow limits, watering date/time
restrictions, and punitive monetary fines for violations [2]. These
restrictions and conservation projects require timely water con-
sumption data and processing to enforce the ordinances, as
well as educational and targeted communication with the water
consumers.

The water utilities need an easy method to identify which
customers’ behavior is within the accepted normal patterns,
and which customers’ behavior is wasteful, fraudulent, or in
violation of regulations. The unsupervised clustering algorithm
presented in this research fills the need for grouping customers
by behavior. This assists the utility to determine customers
needing additional scrutiny and those that do not. The output of
this algorithm is a hierarchical diagram grouping all customers
compared with each other using an information-theoretic dis-
tance measure based on the temporal behavior patterns observed
within the collected flow measurements.

The unsupervised clustering algorithm described in this article
addresses the need to divide a population of water utility cus-
tomers into groups based on their similarities and differences,
using only the measured flow data collected by water meters.
Two motivations drive this article—a commercial motivation to
provide useful segregation of customer data, and an academic
motivation to create a new method of comparing two time series.
The agglomerative clustering method accommodates the practi-
cal limitations of a utility’s finances, resources, or staffing. This
allows the customer data to be segmented into groups for tar-
geted marketing, conservation campaigns, or incentive programs
based on the water usage data. As time-of-use billing is not yet
widespread in water systems, the consumption volume, patterns,
and flow rates are more critical to identify groups of customers.
The academic contribution of this work, the wVI distance
measure, presents a novel component-weighting scheme for
emphasizing components of GMM with compact distributions.

The remainder of this article is organized as follows.
Section II describes the water supply industry and related work.
Section III explains the method for clustering customers based
on their water consumption. Section IV describes the data used
for our experiments. Section V presents the experiments and
results. Finally, Section VI concludes this article.

II. BACKGROUND

While over 15 million American households rely upon private
well sources for water [3], the remaining 110 million households
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are connected to public water supplies. Likewise, most commer-
cial and industrial applications use public water supplies. Public
and municipal water utilities must carefully monitor the water
they provide for public safety, billing, and resource management.

Over the last few decades, water utility companies have begun
installing automated meter reading (AMR) systems to further
simplify the process of meter reading, decrease manual labor,
and reduce transcription errors within collected data [4]. These
systems allow more frequent reporting of measured demand
at the individual customers, while simultaneously reducing the
manual effort of physically looking at each meter to record the
volume measured. In 2018, the American Water Works Associ-
ation reported 37% of utilities in North America have fully im-
plemented AMR systems, and another 24% are in the process of
doing so [5]. Many of the AMR systems support quarter-hourly
reads, but battery limitations and data-related costs constrain the
data collection to hourly or daily reads. It is from these AMR
systems that the data for our proposed algorithm comes.

While there is little work in customer water flow clustering,
other research explores clustering of energy customers using
smart meter data. Panapakidis et al. [6], [7] implement clustering
of electric smart meter data. As opposed to creating models
such as our algorithm, their work clusters the daily typical
load profiles within a customer’s dataset. Representatives of
those clusters are used to complete the second stage clustering
across the population of all customers. Their work illustrates the
complex problem of identifying the optimal number of clusters
in a diverse dataset. In contrast to the Panapakidis work, the
clustering method presented here does not require a definition
of an optimal number of clusters.

Bose and Chen [8], [9] track changing cluster populations
over time using fuzzy c-means algorithms. Their work focuses
upon migratory patterns of cellular phone customers, for the
purposes of tracking dynamic market demands and customer
retention. Their data exhibit not only customers who migrate
from one cluster within the data to another, but also the formation
of new clusters and dissolution of others as new behavior patterns
emerge within the population.

A related problem arises in clustering music. Genre classifi-
cation is not an identical problem, as the entirety of the work
is available at time of classification. The whole song is already
produced and recorded, but similarity exists in the approach to
first model the music, and then compare the model with others
during the classification step. Logan and Salomon [10] create
models using the audio spectrum of the composition and then
cluster multiple works using earth movers distance. Jensen et al.
[11] create GMMs from the Mel frequency coefficients within a
work and then cluster those models based on three different
distance measures—Kullback–Leibler distance, earth movers
distance, and normalized least squares.

Another popular algorithm, spectral clustering, simplifies the
problem by reducing the dimensionality in a different manner.
First, the similarity matrix is constructed as a representation of
the commonalities between every pair of data samples. Then, a
graph Laplacian is computed from this similarity matrix. The
clustering operates on eigenvectors from this graph Laplacian
matrix and some predetermined clustering algorithm such as
k-means or c-means. Spectral clustering algorithms vary on

the specific details of constructing the graph Laplacian and the
clustering step, but the same framework applies [12]–[14].

Statistical modeling of biological time-series has been applied
to electrocardiogram data for classifying specific heart rhythms
[15], [16]. This work casts the time-series signals into an RPS
and further applies GMMs to represent the attractor within the
RPS. These models then classify a new time-series as a partic-
ular heart rhythm, aiding in medical diagnosis. Our clustering
method used to group water meter time series is similar to that
of [13] and [17]. We extend their work by clustering different
customer models using the VI distance measure.

Some existing research classifies water usage based on me-
tering data. Laspidou et al. [18] use quarterly water billing
information and self-organizing maps to cluster customers based
on consumption. Willis et al. [19] and Cardell–Oliver [20]–
[22] investigate fixture-level consumption patterns to identify
specific end uses of water in a location using high-resolution
metering. Other research focuses upon partitioning a utility’s
entire water distribution network into the optimal district me-
tered areas for processing groups of customers sourced by the
same supply mains [23], [24]. Related research using smart
meter flow data has produced outlier detection and forecasting
algorithms [25]–[27] and leakage detection methods [28]. In
contrast to this existing water utility research, our article focuses
upon clustering similar customers based on temporal behavior
patterns using only the hourly flow measurements recorded in
the BEACON AMA system.

III. METHOD

Our approach transforms the water meter time series into an
RPS. A GMM is learned on this space. Next an ellipsoid hull
is computed to model each GMM component, and a geometric
tessellation of the hull is calculated within the RPS. To compare
two customers, the variation of information (VI) distance is
calculated between the hulls of each customer. The VI distance
between customers is then used to build an agglomerative cluster
hierarchy.

When comparing large sets of raw time-series data, the com-
putational and storage space requirements quickly become un-
manageable. Reducing the large set of individual measurements
to a small set of model parameters for each customer makes the
comparison more manageable. One way to study these systems
is to cast the time series into an RPS such that any location within
the space identifies the system state at that moment. Phase space
embedding is an established method to represent a system in a
vector space chosen to illustrate the dynamics of the original
system [29].

A GMM is learned on the RPS. An ellipsoid hull is then
computed to model each GMM component for a customer, and
a geometric tessellation of the hull is calculated within the RPS.
The volume of this ellipsoid hull estimates the entropy of this
component of the GMM. A summation of all GMM component
hull volumes estimates the entropy of the customer model. If a
customer has perfectly consistent water consumption behaviors,
the associated GMM component volumes will be small. As
variations in the consumption behavior or temporal patterns
increase, the GMM component volumes will also increase.
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Fig. 1. Recorded hourly consumption values for a residential customer.

VI is a measure of how much information is lost when
combing two groups as opposed to keeping the groups separate.
Unlike mutual information (MI), VI is a true metric, satisfying
the triangle inequality and allowing comparison of clusters with
different populations. The VI corresponds to the nonoverlapping
volume of two convex hulls in the RPS. If the two hulls are
coincidental, the VI is small, and combining the two into a new
cluster loses very little information. Conversely, if the two hulls
are entirely separate, the VI is large and reflects the large loss
of unique information if they are combined. Hulls that overlap
partially or touch will fall somewhere in between these two
extremes.

Two customer models are compared to each other by com-
puting the points of intersection of the GMM component hulls.
When the surface of one hull is located within the enclosed
volume of a second hull, an intersection is present. Consider
the intersection of a large and a small ellipsoid. A boundary for
the intersecting volume is created by first identifying the set of
points on the surface of the large ellipsoid that exist within the
volume of the smaller ellipsoid. Then, we identify the reciprocal
set of points on the surface of the small ellipsoid that exist within
the volume of the larger. A new convex hull is created from the
combined set of intersecting points.

Since the summation of all model component volumes en-
closed within a hull estimates the entropy of the customer
model, the summation of all the intersecting volumes between
two customer models is the estimated MI between those two
customer models. The VI is then the sum of all volumes from
both models subtracting double the volume of the MI. The VI
distance is then used to cluster customers. We avoid the problem
of determining the number of clusters by using an agglomerative
cluster hierarchy. Then post hoc the number of clusters can be
selected accommodating the utility’s resource limitations.

The remainder of this section presents the data normaliza-
tion and cleaning process. Then the details of the method are
presented. This includes the definitions of VI, wVI, RPS, and
GMM.

A. Cleaning and Normalizing Data

The algorithm is not designed to accommodate large gaps
in the data. During the data cleaning process, the longest
continuous set of hourly measurements without any missing,
aggregated, or negative flow data is selected for evaluation,
discarding other data. The BEACON AMA system, which is
used for data collection, can disaggregate values naïvely, but it
stores an internal flag for those records, permitting the detection
and removal of disaggregated data that would otherwise affect
the overall performance of the method.

Water meters in residential properties sit idle for many hours
of the day while the occupants are at work or asleep, resulting
in most recorded data indicating zero volume. Likewise, many
commercial meters sit idle during the evening or early morning
hours when the business is closed. Fig. 1 shows a few days of
recorded hourly consumption values for a residential customer.
The periods indicating zero consumption coincide with time
spent sleeping or at work during the weekdays. Fig. 2 shows a
histogram of the recorded values, as well as the overall median
and nonzero median, which are described below.

The zeros themselves are not unusual, but the number of zero
measurements can create computational problems. Traditional
normalization by median or mean is deceptively small, due to
the large quantity of zeros in this data; or erroneous, due to
divide-by-zero errors. Instead, the median of nonzero values is
used—this is the number associated with the 50th percentile
of consumption for all nonzero consumption records. Using
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Fig. 2. Histogram of values for a residential customer.

the time series X = {. . . , xt�� , xt, xt+� , xt+2� , . . .}, take the
median of the set ofX, excluding values inX equal to zero. Then
MedX �=0 = Median(X � 0). MedX �=0 is the nonzero median.
Dividing the original data by MedX �=0 produces the normalized
data: Xnormalized = X/MedX �=0.

Normalizing the recorded values for each customer in this
manner allows comparison between customers of different size
(number of household members or size of business). The com-
parison then identifies common behavioral patterns, regardless
of the volume of the consumption pattern.

The next section describes the process of converting a time
series to an RPS and using a GMM to model the RPS.

B. Gaussian mixture models (GMMs) in reconstructed phase
space (RPS)

One way to study customer flow is to cast the time series into a
vector space such that any location within the space identifies the
system state at that moment [30]. Phase space embedding [30],
[31] is an established method to represent a system in a vector
space chosen to illustrate the dynamics of the original system
most clearly. Fig. 3 illustrates the embedding of a few data points
as an example. Two groups of repeated behaviors are shown,
red dots indicate behaviors occurring on a 24-hour schedule,
and blue dots indicate behaviors occurring on a weekly, 168-
hour schedule. The embedding process, indicated by the colored
arrows, shows how groups form within the vector space with
axes corresponding to 0-, 24-, and 168-hour time lags.

When the time series is embedded into the phase space,
a single point is defined as a vector Y of points from the

original series X each separated by time lags Tm to produce
the dimensions within the space. The subscript m indicates
the particular dimension associated with that lag Tm: Y =
[xt+T1 , xt+T2 , . . . , xt+Tm ]. These vectors are plotted in the
newly defined phase space as a topological embedding of the
original system [31].

A GMM is learned over the RPS, where a GMM of k com-
ponent Gaussians in d dimensions is

�X =
k�

i=1

(Nd (µk,�k))i. (1)

The central location vector µk = [µ1, µ2, . . . , µd] describes
each Gaussian component along with a d× d covariance matrix

�k =

�

����

�11 �12 • • • �1d
�21 �22 • • • �2d

...
...

. . .
...

�d1 �d2 • • • �dd

�

����
. (2)

The GMM means and variances are estimated using expec-
tation maximization [32], where the initial GMM centers are
generated using k-means clustering. The initialization process is
stochastic, yielding different GMMs in each trial of the process.
The consistency of the resulting GMMs is evaluated in the
experiments and results section of this paper.

C. Variation of Information

To measure the similarity of two customers’ GMMs the VI
measure is used. VI is a measurement of how much information
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Fig. 3. Embedding from a time series into a vector space forces groups of points to form based on repetitive behaviors corresponding to the time lag.

is lost when combing two groups as opposed to keeping the
groups separate. Unlike MI, VI is a true metric [33], satisfying
the triangle inequality and also allowing comparison of clusters
with different populations. We chose VI as a distance measure
because of these desirable properties.

MI describes the amount of information known about one
probabilistic model through knowledge of a second probabilistic
model. MI is the information shared by the two models, defined
as

MI (A,B) =
�

i

�

j

P (ai, bj) log
	

P (ai, bj)
P (ai)P (bj)



. (3)

The models A and B each contain one or more components,
ai and bj. MI is illustrated in Fig. 4 and is used to compute the
VI [14], [34], [35].

The VI distance between two sets is the sum of unique
information that would be lost if the two sets are combined.
With the MI as defined by (3) and individual entropy of each set

H (A) =
�

i

P (ai) log2 [P (ai)] and

H (B) =
�

j

P (bj) log2 [P (bj)] (4)

the nonintersecting parts of all sets are collectively

V I (A,B) = H (A) + H (B) � 2 [MI (A,B)] . (5)

Fig. 4. Venn diagram describing relationships between entropy, MI, and VI.

The relationships between the individual entropy of each set,
the intersection of the two sets (MI), and the VI are clarified in
Fig. 4 Venn diagram.

D. Weighted Variation of Information

Adding component weighting to the VI yields better cluster-
ing consistency. This section describes the wVI variant of VI.
Let the average of the trace of the covariance matrix from (2) be

�avg =
�d

i=1
1

�dd

d
. (6)
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Fig. 5. Visualizing MI (intersecting volume) of two customer models.

Then the weight for the kth GMM component described in
(1) is

wk =
1

�k avg�k
i=1

1
�i avg

. (7)

Finally, apply these weights when computing the entropy,
MI, and VI distance between two cluster models (cluster A and
cluster B)

wH (A) =
n�

i=1

H (Ai)wAi (8)

wH (B) =
m�

k=1

H (Bk)wBk (9)

wMI (A,B) =
m�

k=1

n�

i=1

MI (Ai, Bk)wAiwBk. (10)

And the wVI distance is

wV I (A,B) = wH (A) + wH (B) � 2 [wMI (A,B)] . (11)

This weighting allows the clustering algorithm to emphasize
smaller cluster components, those with a tighter standard de-
viation, and reduces emphasis of the components with a large
average standard deviation.

E. Estimating VI

The VI distance metric describes the amount of information
lost when two models are combined into a new model. As an
example in three dimensions, Fig. 5 illustrates that the VI corre-
sponds to the nonoverlapping volume of two convex hulls. If the
two hulls are coincidental, the VI is small, and combining the

two into a new cluster loses very little information. Conversely,
if the two hulls are entirely separate, the VI is large and reflects
the large loss of unique information if they are combined. Hulls
that overlap partially or touch will fall somewhere in between
these two extremes.

An ellipsoid hull is computed to model each Gaussian mixture
component for a customer, and a geometric tessellation of the
hull is generated within the RPS. The volume of this ellipsoid
hull

Vk =
	

4
3
�

 d�

j=1

rj (12)

estimates the entropy of this component of the GMM, with rj
being the radius of the ellipsoid for any axis. The volume is
computed based on the Qhull method [36]. A summation of all
GMM component hull volumes

Ĥ =
k�

i=1



�
	

4
3
�

 d�

j=1

rj

�

�

i

(13)

estimates the entropy of the customer model. If a customer has
perfectly consistent water consumption behaviors, the associ-
ated GMM component volumes will be small. As variations
in the consumption behavior or temporal patterns increase, the
GMM component volumes will also increase.

Two models are compared to each other by computing the
points of intersection of the GMM component hulls. Fig. 5
shows a simple model with spheres, illustrating the intersection
between the two hulls as a solid volume. Since the summa-
tion of all model component volumes enclosed within a hull
estimates the entropy Hof the particular customer model, the
summation of all the intersecting (filled) volumes between two
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