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Abstract—This paper develops the foundations of a technique
for detection and categorization of dynamic/static eccentricities
and bar/end-ring connector breakages in squirrel-cage induction
motors that is not based on the traditional Fourier transform fre-
quency-domain spectral analysis concepts. Hence, this approach
can distinguish between the “fault signatures” of each of the
following faults: eccentricities, broken bars, and broken end-ring
connectors in such induction motors. Furthermore, the techniques
presented here can extensively and economically predict and
characterize faults from the induction machine adjustable-speed
drive design data without the need to have had actual fault data
from field experience. This is done through the development of
dual-track studies of fault simulations and, hence, simulated fault
signature data. These studies are performed using our proven
Time-Stepping Coupled Finite-Element–State-Space method to
generate fault case performance data, which contain phase current
waveforms and time-domain torque profiles. Then, from this data,
the fault cases are classified by their inherent characteristics,
so-called “signatures” or “fingerprints.” These fault signatures
are extracted or “mined” here from the fault case data using
our novel Time-Series Data Mining technique. The dual track of
generating fault data and mining fault signatures was tested here
on dynamic and static eccentricities of 10% and 30% of air-gap
height as well as cases of one, three, six, and nine broken bars
and three, six, and nine broken end-ring connectors. These cases
were studied for proof of principle in a 208-V 60-Hz four-pole
1.2-hp squirrel-cage three-phase induction motor. The paper
presents faulty and healthy performance characteristics and their
corresponding so-called phase space diagnoses that show distinct
fault signatures of each of the above-mentioned motor faults.

Index Terms—Artificial intelligence, data mining, diagnostics
through current waveforms, dynamical systems analysis, electric
drives, fault diagnosis, induction motors, state-space methods,
time series, time-stepping finite elements.
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I. INTRODUCTION

T HREE-PHASE induction motors are presently in
common use in a majority of electronically controlled

ac adjustable/variable-speed drives. During the past 20 years,
there have been continuing efforts at studying and diagnosing
faults in ac motor drives. A large number of these studies are
cited in a major bibliographical paper under the aegis of the
Electric Machinery Committee of the IEEE Power Engineering
Society, which is authored by Benbouzid [1]. The bulk of fault
diagnostics/detection and monitoring investigations can largely
be divided into three categories.

The first category comprises work that centered on traditional
lumped-parameter modeling and analysis of faulty motor per-
formance, and case-history studies of actual motor faults in sta-
tors, rotors and bearings, as well as field experience and prac-
tical engineering insights into the causes and effects of these
faults (see [2]–[5]).

The second category comprises investigations that centered
upon “online” motor condition monitoring and fault diagnos-
tics using the motor terminal current and voltage waveforms,
while applying traditional Fourier transform spectral analysis
techniques to these waveforms in actual case-study field ex-
perience. Some of these works included applications of neural
network and other artificial intelligence (AI) methods to these
spectral analyses results (see [6]–[17]).

The third category consists of a small number of investiga-
tions in which the method of finite-element analysis of elec-
tric motor performance was enlisted in fault diagnostic studies,
these works were rather limited in scope (see [18]–[20]).

Although the above brief summary indicates the existence of
a large body of work and research on fault monitoring and di-
agnostics in motor drive systems, it also indicates that much to
be desired is yet to be accomplished. In particular, there are two
main problems, which we begin to address in this paper. The
first is a modeling algorithm that addresses the lack of compre-
hensive field fault databases. The second is an algorithm that
addresses the difficulty in distinguishing between degrees of
faults.

Our approach to the problem of diagnosing faults in induction
motor adjustable-speed drives (IMASDs) is new and unique.
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First, knowing the design details of a motor-drive system, we
can generate data for a plethora of fault conditions by simula-
tions obtained from the experimentally verified Time-Stepping
Coupled Finite-Element–State-Space (TSCFE–SS) method
[21]–[25]. This is without the need to encounter and acquire
data for such faults in actual field experience with IMASDs.
Second, using Time-Series Data Mining (TSDM) [26]–[28],
hidden patterns and nuances of differences between healthy
performance signatures and various fault signatures can be
identified. These fault signatures reveal the severity (per-
centage of air-gap height) of dynamic and static eccentricities,
the severity (approximate number) of broken squirrel-cage
bars, and the severity (approximate number) of broken end-ring
connectors. That is, this approach automatically and efficiently
identifies and makes use of the data of these fault signatures in
fault diagnostics.

The faulty operations being studied here include: 10% and
30% degrees of static and dynamic eccentricities, as well as one,
three, six, and nine broken bars in addition to three, six, and
nine broken end-ring connectors [23], [24]. The advantage of
this dual track method lies in its rigor in predicting effects of
motor faults on performance. The second portion of this dual
track identifies and extracts hidden patterns and nuances that
are characteristic and predictive of specific faults through data
mining of the fault signatures.

Accordingly, this paper presents the development of a
comprehensive set of algorithms for fault simulation, and
fault identification/diagnosis in IMASDs. Specifically, we
expand the number and type of faults by studying motor shaft
eccentricities and the difficult case of a single broken bar in
a side-by-side comparison with other squirrel-cage breakages
(broken bars and broken connectors). We have developed a
new, more sophisticated algorithm for differentiating these new
types of faults from those presented in an earlier paper [28].

II. TSCFE–SS METHOD

The TSCFE–SS technique [21]–[25] computes on a time
instant-by-instant basis (time profiles/waveforms) the input
phase and line currents, voltages, developed power, and torque
of a motor as functions of the particular magnetic circuit,
winding layouts, and materials as well as inverter (power
conditioner) operating conditions. Computations include the
full effects of interaction of machine space harmonics with
time-domain harmonics due to modern fast electronic switching
on overall motor-controller/drive performance [25], [29]. Thus,
the TSCFE–SS algorithms can also be used in parametric
design studies.

The TSCFE–SS aspect fully incorporates the nonlinear ef-
fects of magnetic saturation in the machine and makes full use of
the natural machine winding’s frame of reference (for details see
[21]–[25]). Also, see Fig. 1 for the functional flowchart block di-
agram, which summarizes the essence of this approach. Hence,
again this assures inclusion of all significant space harmonics
due to the physical design and nonlinear nature of the motor’s
magnetic circuit, as well as the time harmonics generated from
the inverter switching in the motor-drive modeling and simu-
lations. Accordingly, the simulated fault signatures are derived

Fig. 1. Functional block diagram/flowchart of the TSCFE–SS method.

Fig. 2. Motor cross section.

from time-domain phase current and voltage waveforms, and
from simulated instantaneous torque profiles that rigorously in-
corporate the motors’ design characteristics.

The state model for the 1.2 hp motor, the cross section of
which is given in Fig. 2, was derived from generalized ma-
chine theory using the natural frame of reference, and the
inverter and machine models were integrated. The state vari-
ables in this model are the, , and armature windings’ flux
linkages as well as the 34 flux linkages of the 34 squirrel-cage
loops under healthy motor conditions (see the motor’s cross sec-
tion of Fig. 2 and the developed squirrel-cage loop diagram of
Fig. 3). Again, for details, [21]–[25] should be consulted. To
represent bar breakages and end-ring connector breakages the
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Fig. 3. Schematic representation of the modeling of a healthy cage.

Fig. 4. Schematic representation of the modeling of a broken rotor bar.

Fig. 5. Schematic representation of the modeling of a broken end-ring
connector.

Fig. 6. Schematic representation of air-gap eccentricity.

squirrel-cage loops need to be disturbed according to patterns
such as shown in Figs. 4 and 5, respectively. See [23] for further
details.

As for the cases of static and dynamic eccentricities, those
were modeled by disturbing the rotor’s location and conse-
quently its FE grid’s location as shown schematically in Fig. 6.
The schematic in Fig. 6 can represent the static and dynamic
eccentricities depending on which of the two points separated
by the distance, , are made to be the axis of rotor rotation
(for details [24] should be consulted further). In essence, in
static eccentricity the air gap takes the shape of a stationary
crescent-like pattern, while in dynamic eccentricity the air gap
takes the shape of a continuously modulated revolving crescent.

The TSCFE–SS model yields the steady-state time-domain
profiles of the change in all winding (loop) inductances under
actual time-varying saturation conditions, and all the steady-
state time-domain profiles/waveforms of the developed machine
torque and all the 37 winding currents (three are the, , and

stator armature currents, the remainder are the squirrel-cage
loop currents whose number is 34 or less depending on the pat-
tern of bar/connector breakages being simulated).

III. TSDM M ETHOD

The TSDM method, the second track of the dual-track ap-
proach, addresses the problem of differentiating various types
and degrees of motor drive faults. The TSDM method reveals
hidden patterns in time series data (current and voltage wave-
forms as well as time-domain torque profiles). A clear distinc-
tion is shown here between the various faulty and healthy modes
of motor operation. Our approach provides a definite new ad-
vantage over frequency-spectrum Fourier transform techniques
particularly used for fault diagnostics by earlier investigators
[6]–[17].

A process called time-delay embedding [30] is used to trans-
form the torque time series into a reconstructed state space, also
called a phase space. Given the first difference torque time series

, where ,
is a time index, and is the number of observations, a two di-

mensional phase space is created by plotting on the
– plane’s abscissa and on the ordinate. See Figs. 13

–24 for examples of such phase spaces.
This approach is based soundly in dynamical systems theory.

Takens showed that the time-delay embedding process is able
to reconstruct a topologically identical state space to the orig-
inal state space of the system [31]. Hence, the features that cap-
ture the similarities and differences of the reconstructed state
space are capturing similarities and differences of the under-
lying state structure of the system. We exploit this theoretical
relationship between the reconstructed state space and the orig-
inal state space to distinguish motor drive faults.

The feature used for distinguishing between reconstructed
phase spaces generated for different healthy and faulty modes of
motor operation is the so-called radius of gyration [32] (which
is used in this work as a fault identification parameter) around
the center of mass of the points in the phase space, where each
point in the phase space is given a unit mass. The radius of gy-
ration is calculated as follows [32]:

(1)

where the distance between the center of mass and theth
point in the phase space is

(2)

and and , the centers of mass for their respective dimen-
sions, are

(3)

Additionally, is the time lag of the phase space, is the
number of observations, and is the time-series observa-
tion at time index (see [30] for details of the time-delay em-
bedding process). It should be pointed out that is the dis-
tance of the th phase-space “point” from the center of mass of
the phase-space “points.” Since we are using a two-dimensional
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phase space, which is formed by plotting on the –
plane’s abscissa and on the ordinate, the square of the dis-
tance is calculated by summing the squares of the differences
between the phase-space point’s value in each dimension and
its corresponding center of mass for that same dimension. The
value is the center of mass for each phase-space dimension.

This radius of gyration feature is a sufficient first approxi-
mation of the phase space to allow distinguishing between the
motor’s healthy mode of operation and various squirrel-cage
breakage faults being presented here. It is also sufficient to iden-
tify the degree of the eccentricity, e.g., it allows the differen-
tiation between modes of operation of 10% and 30% degrees
of eccentricities. However, we introduce here a second feature,
which is required to differentiate between the dynamic and static
eccentricities of the same degree. This second feature is the stan-
dard deviation of the radius of gyration, which is defined as
follows:

(4)

The algorithm for classifying the profiles is essentially a
two-step process. The first step categorizes all broken bar,
end-ring connector, and eccentricity faults. It also determines
the number of broken bars, number of broken end-ring connec-
tors, or the degree of the eccentricity. If required, the second
step determines the type of eccentricity.

Given a motor’s time-domain torque first difference as a
time series (profile), and its corresponding reconstructed phase
space, the algorithm, for determining the unknown operating
mode of the motor from which the time-domain torque profile
was sampled, is best described as follows.

Algorithm IDENTIFY MODE ( , , , )

Input. A set of the radii of gyration
of the known operating modes, whereis the number of
known operating modes. The radius of gyration for the un-
known mode, . A set of the stan-
dard deviations of the radii of gyration for the eccentricity
modes of operation, where is the number of known ec-
centricity modes of operation. The standard deviation of
the radius of gyration for the unknown mode,.
Output. The identified mode of operation.

1) . The index
operator yields the “index of the mode” with the
closest radius of gyration to the unknown mode.

2) if is an index for an eccentricity mode of operation
3) then Form a subset of with the standard de-

viations of the radii of gyration that have the same
degree of eccentricity as the mode of operation cor-
responding to the index,. For example if the index

corresponds to a 30% dynamic eccentricity,has
as elements the standard deviations of the radii of
gyration for the 30% static eccentricity and the 30%
dynamic eccentricity.

4) .The index
operator yields the “index of the mode” with the
closest standard deviation of the radius of gyration

Fig. 7. Healthy motor torque profile.

Fig. 8. 10% static eccentricity torque.

to the standard deviation of the radius of gyration of
the unknown mode.

5) return the eccentricity mode of operation corre-
sponding to the index.

6) else return the mode of operation corresponding to
the index .

Since the diagnostic algorithm is expected to run online, as
compared to the TSCFE–SS simulations, which are run offline,
it is important to study both its computational and memory
complexity. An analysis of the IDENTIFYMODEalgorithm shows
that it has both a time and space complexity, whereis
the number of torque samples, hence, the algorithm can be run
in linear time. This is in comparison to any frequency based ap-
proach, which relies on the fast Fourier transform (FFT), which
has a time complexity of and a space complexity
of . Hence, from a processing complexity standpoint the
IDENTIFYMODE algorithm is simpler than frequency-based
methods and could easily be implemented in real time.

IV. TSCFE–SS SIMULATIONS

Simulations of the healthy cage case, the 10% and 30%
static and dynamic eccentricity cases, as well as the one, three,
six, and nine broken bar cases; the three, six, and nine broken
end-ring connector cases were generated using our TSCFE–SS
method. The resulting torque profiles for the simulation of
the healthy rotor/cage case; the 10% and 30% static and
dynamic eccentricity cases; and one broken bar case are given
in Figs. 7–12, respectively. The torque profile simulations for
the other cases were presented in [28]. The reconstructed phase
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Fig. 9. 30% static eccentricity torque.

Fig. 10. 10% dynamic eccentricity torque.

Fig. 11. 30% dynamic eccentricity torque.

Fig. 12. One broken bar torque profile.

spaces of the torque first difference time series corresponding
to the torque profile simulations for the healthy rotor/cage
case and all the faulty rotor/cage cases mentioned above are
illustrated in Figs. 13–24, respectively.

Fig. 13. Healthy motor torque first difference phase space.

Fig. 14. 10% static eccentricity torque first difference phase space.

Fig. 15. 30% static eccentricity torque first difference phase space.

Fig. 16. 10% dynamic eccentricity torque first difference phase space.

Two concerns arise in relying on simulated datasets. The first
is the reliability of the simulations. The first concern is ad-
dressed by comparing the resulting simulated profiles with the
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Fig. 17. 30% dynamic eccentricity torque first difference phase space.

Fig. 18. One broken bar torque first difference phase space.

Fig. 19. Three broken bars torque first difference phase space.

Fig. 20. Six broken bars torque first difference phase space.

actual experimental profiles. Although we have not done this
with faulty motors, these experimental results have been col-
lected on a healthy version of the motor under several operating
conditions [21], [22], [24].

Fig. 21. Nine broken bars torque first difference phase-space.

Fig. 22. Three broken connectors torque first difference phase space.

Fig. 23. Six broken connectors torque first difference phase space.

Fig. 24. Nine broken connectors torque first difference phase space.

The second concern is the computational requirements
needed to generate the simulations. The amount of digital
processing, although not trivial, is less demanding than may
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TABLE I
RADIUS OF GYRATION FOR TRAINING PHASE SPACES

TABLE II
STANDARD DEVIATION OF THE RADIUS OF

GYRATION FOR TRAINING PHASE SPACES

be expected. An average 4-s simulation takes approximately
36 min on a dual 2-GHz Pentium Xenon processor. All 12
simulations take approximately 7 h if run on a single machine.
However, using a standard cluster computing system built
on the Condor environment [33], the elapsed time for all
simulations may be completed in far less time by running the
simulations of the various operating conditions in parallel.

V. RESULTS

From the TSCFE–SS model, we were able to obtain the time-
domain simulations for longer time duration than the one-cycle
time series shown in Figs. 7–12 for the various torque profiles.
Thus, one easily obtains an “out-of-sample” or “test” torque
first difference time series for each of the 12 torque profile
(torque first difference) cases analyzed by time-delay embed-
ding and radius of gyration calculations. Accordingly, the ra-
dius of gyration as a classifying feature was confirmed in the
“out-of-sample” or “test” version of each motor mode of oper-
ation. The results are shown in Tables I and II for the sample
simulations, and all compare well on a one-to-one correspon-
dence with the out-of-sample values given in Tables III and IV,
for each case by case, respectively. For example, the sample or
training radius of gyration for the healthy motor mode of opera-
tion is 0.0571, while the out-of-sample or testing radius of gyra-
tion is 0.0585. The sample and out-of-sample radii of gyration
for the one broken bar motor mode of operation are 0.0892 and
0.0892, respectively. Likewise, the sample and out-of-sample
radii of gyration for the 10% static eccentricity motor mode of
operation are 0.0466 and 0.0469, respectively.

The results of the classification algorithm are shown
in Tables V–VII. The headings for the tables are as fol-
lows: H—Healthy Motor, B1—One Broken Bar, B3—Three
Broken Bars, B6—Six Broken Bars, B9—Nine Broken Bars,

TABLE III
RADIUS OF GYRATION FOR TESTING PHASE SPACES

TABLE IV
STANDARD DEVIATION OF THE RADIUS OF

GYRATION FOR TESTING PHASE SPACES

TABLE V
ABSOLUTE DIFFERENCESBETWEEN TRAINING AND

TESTING RADII OF GYRATION (�10 ) PART I

TABLE VI
ABSOLUTE DIFFERENCESBETWEEN TRAINING AND

TESTING RADII OF GYRATION (�10 ) PART II

C3—Three Broken Connectors, C6—Six Broken Connectors,
C9—Nine Broken Connectors, S10—10% Static Eccentricity,
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TABLE VII
ABSOLUTE DIFFERENCESBETWEEN TRAINING AND TESTING STANDARD

DEVIATION OF THE RADII OF GYRATION (�10 ) PART II

S30—30% Static Eccentricity, D10—10% Dynamic Eccen-
tricity, and D30—30% Dynamic Eccentricity. The first column
gives the actual mode of operation. The first row indicates
the training radius of gyration that was used. The cells of
Tables V and VI are theTraining radius of gyration (given
by the column heading) Testing radius of gyration (given
by the row heading). The minimal difference in each row
and, thus, the classification for all but the eccentricity motor
modes of operation, is bolded. The cells of Table VII are the
Training standard deviation of the radius of gyration (given

by the column heading) Testing standard deviation of the
radius of gyration (given by the row heading. The minimal
difference in each row and, thus, the classification, is bolded.
The results illustrated in Tables V–VII confirm the validity of
the approach, because of the small magnitudes of the absolute
differences of these bolded radii of gyration and the absolute
differences of these standard deviations of radii of gyration, in
comparison to all the other differences in the tables (matrices).

We can see in Table VI why a two-step process of classifica-
tion is required for eccentricity faults. If we use only the radius
of gyration, the 30% static eccentricity is misclassified as a 30%
dynamic eccentricity. However, as is seen in Table VII, by using
the second step and the standard deviation of the radius of gy-
ration, all faults can be correctly classified.

In other words, the classification accuracy on the out-of-
sample or testing data is 100%. Beyond the classification ac-
curacy, it is significant to point out that the classifications are
robust in the sense that for most of the classifications the next
nearest class has absolute difference of radii of gyration that is
one to two orders of magnitude greater than the correct class.

VI. L ARGE-SCALE IMPLEMENTATION

This proactive approach to fault diagnostics could head off
the costly and catastrophic cascading of faults that lead to plant
shutdowns and consequent long repair/maintenance periods.
The resulting fault identification and diagnostic information
also can be used to facilitate the creation of efficient and
effective maintenance schedules based on accurate classifi-
cation of the nature and status of incipient faults associated
with a particular motor drive. Future research directions
include studying current waveforms, greater numbers of faults,
direct comparisons to frequency-based methods, impact of
pulsewidth-modulation (PWM) control, and various load
conditions. Hence, this technique has significant potential in
applications to key induction motor ASDs such as in important
process industries and similar applications where extended
maintenance downtimes cannot be tolerated.

VII. CONCLUSIONS

In conclusion, this paper has presented s the integration of
the TSCFE–SS method, which can generate a large number of
faulty and healthy IMASD simulations, with the TSDM tech-
nique, which can automatically characterize and predict IMASD
modes of operation. The method was shown to enable one to
differentiate between types of faults such as dynamic and static
eccentricities and distinguish them from squirrel-cage break-
ages. The method also distinguishes between the degrees of fault
severities such as percentage eccentricities and number of bar as
well as connector breakages. Once again, it should be reempha-
sized that the fault classification achieved by this methodology
is robust, in the sense that for most of these fault classifications
the next nearest class (other than the fault’s calls) has absolute
difference of radii of gyration that is one to two orders of magni-
tude greater than the correct (fault) class. Hence, this dual-track
approach could be used to head off the costly and catastrophic
cascading of IMASD faults that lead to plant shutdowns and
can facilitate the creation of efficient and effective maintenance
schedules.
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