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Abstract—This paper develops the foundations of a technique I. INTRODUCTION
for detection and categorization of dynamic/static eccentricities . . .
and bar/end-ring connector breakages in squirrel-cage induction HREE-PHASE induction motors are presently in
motors that is not based on the traditional Fourier transform fre- common use in a majority of electronically controlled

quency-domain spectral analysis concepts. Hence, this approachac adjustable/variable-speed drives. During the past 20 years,
can distinguish between the “fault signatures” of each of the there have been continuing efforts at studying and diagnosing

following fal_JIts: ecc_entrlc!tles, broken bars, and broken end_—rlng faults in ac motor drives. A large number of these studies are
connectors in such induction motors. Furthermore, the techniques

presented here can extensively and economically predict and Citéd in @ major bibliographical paper under the aegis of the
characterize faults from the induction machine adjustable-speed Electric Machinery Committee of the IEEE Power Engineering
drive design data without the need to have had actual fault data Society, which is authored by Benbouzid [1]. The bulk of fault

from field experience. This is done through the development of giagnostics/detection and monitoring investigations can largely
dual-track studies of fault simulations and, hence, simulated fault be divided into three categories

sighature data. These studies are performed using our proven . . .
Time-Stepping Coupled Finite-Element—State-Space method to | he first category comprises work that centered on traditional

generate fault case performance data, which contain phase current lumped-parameter modeling and analysis of faulty motor per-
waveforms and time-domain torque profiles. Then, from this data, formance, and case-history studies of actual motor faults in sta-
the fault cases are classified by their inherent characteristics, tgrs rotors and bearings, as well as field experience and prac-

so-called "signatures” or "fingerprints.” These fault signatures o engineering insights into the causes and effects of these
are extracted or “mined” here from the fault case data using

our novel Time-Series Data Mining technique. The dual track of faults (see [2]-[5]). _ _ o
generating fault data and mining fault signatures was tested here ~ The second category comprises investigations that centered

on dynamic and static eccentricities of 10% and 30% of air-gap upon “online” motor condition monitoring and fault diagnos-
height as well as cases of one, three, six, and nine broken barstics ysing the motor terminal current and voltage waveforms,

and three, six, and nine broken end-ring connectors. These cases,, ,.: : Iy . .
were studied for proof of principle in a 208-V 60-Hz four-pole while applying traditional Fourier transform spectral analysis

1.2-hp squirrel-cage three-phase induction motor. The paper techniques to these waveforms in actual case-study field ex-
presents faulty and healthy performance characteristics and their perience. Some of these works included applications of neural
corresponding so-called phase space diagnoses that show distinchetwork and other artificial intelligence (Al) methods to these
fault signatures of each of the above-mentioned motor faults. spectral analyses results (see [6]-[17]).

Index Terms—Artificial intelligence, data mining, diagnostics The third category consists of a small number of investiga-
through current waveforms, dynamical systems analysis, electric tions in which the method of finite-element analysis of elec-
drives, fault diagnosis, induction motors, state-space methods, tric motor performance was enlisted in fault diagnostic studies,
time series, time-stepping finite elements. these works were rather limited in scope (see [18]—[20]).

Although the above brief summary indicates the existence of

Paper IPCSD 03-030, presented at the 2001 Industry Applications Socianfarge body of work and research on fault monitoring and di-

Annual Meeting, Chicago, IL, September 30-October 5, and approved for pgnostics in motor drive systems, it also indicates that much to
lication in the IEEE "RANSACTIONS ONINDUSTRY APPLICATIONSby the Electric

Machines Committee of the IEEE Industry Applications Society. Manuscrift® desired is yet to be accomplished. In particular, there are two
submitted for review October 15, 2001 and released for publication April 2Bain problems, which we begin to address in this paper. The

205’3# 5 « with Black & Decker. T MD 21286 USA ( firstis a modeling algorithm that addresses the lack of compre-

Joh'n.éanznu%:ggzx éom).ac ecken, Towson. “Mhensive field fault databases. The second is an algorithm that
R. J. Povinelli, N. A. O. Demerdash, and R. H. Brown are with th@ddresses the difficulty in distinguishing between degrees of
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motor faults on performance. The second portion of this du M

track identifies and extracts hidden patterns and nuances t

are characteristic and predictive of specific faults through de y L o

mining Of the faUIt Signatures- Characterization of Motor Performance by TSCFE-SS Simulations [ (R):S‘l'l)lltl;
Accordingly, this paper presents the development of

comprehensive set of algorithms for fault simulation, and
fault identification/diagnosis in IMASDs. Specifically, weFig. 1. Functional block diagram/flowchart of the TSCFE-SS method.
expand the number and type of faults by studying motor shaft
eccentricities and the difficult case of a single broken bar in
a side-by-side comparison with other squirrel-cage breakages
(broken bars and broken connectors). We have developed a
new, more sophisticated algorithm for differentiating these new
types of faults from those presented in an earlier paper [28].

Il. TSCFE-SS MTHOD

The TSCFE-SS technique [21]-[25] computes on a time
instant-by-instant basis (time profiles/waveforms) the input
phase and line currents, voltages, developed power, and torque
of a motor as functions of the particular magnetic circuit,
winding layouts, and materials as well as inverter (power Coasis
conditioner) operating conditions. Computations include the
full effects of interaction of machine space harmonics witf9- 2- Motor cross section.
time-domain harmonics due to modern fast electronic switching
on overall motor-controller/drive performance [25], [29]. Thusfrom time-domain phase current and voltage waveforms, and
the TSCFE-SS algorithms can also be used in paramefriom simulated instantaneous torque profiles that rigorously in-
design studies. corporate the motors’ design characteristics.

The TSCFE-SS aspect fully incorporates the nonlinear ef-The state model for the 1.2 hp motor, the cross section of
fects of magnetic saturation in the machine and makes full usesdiich is given in Fig. 2, was derived from generalized ma-
the natural machine winding’s frame of reference (for details sekine theory using the naturabc frame of reference, and the
[21]-[25]). Also, see Fig. 1 for the functional flowchart block di-inverter and machine models were integrated. The state vari-
agram, which summarizes the essence of this approach. Hemdxes in this model are the b, andc armature windings’ flux
again this assures inclusion of all significant space harmoniaskages as well as the 34 flux linkages of the 34 squirrel-cage
due to the physical design and nonlinear nature of the motolt®ps under healthy motor conditions (see the motor’s cross sec-
magnetic circuit, as well as the time harmonics generated frdion of Fig. 2 and the developed squirrel-cage loop diagram of
the inverter switching in the motor-drive modeling and simurig. 3). Again, for details, [21]-[25] should be consulted. To
lations. Accordingly, the simulated fault signatures are derivedpresent bar breakages and end-ring connector breakages the
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Fig. 3. Schematic representation of the modeling of a healthy cage.
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Fig. 4. Schematic representation of the modeling of a broken rotor bar.
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Fig. 5. Schematic representation of the modeling of a broken end-rin

connector.
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Fig. 6. Schematic representation of air-gap eccentricity.

squirrel-cage loops need to be disturbed according to patterns
such as shown in Figs. 4 and 5, respectively. See [23] for further

details.

As for the cases of static and dynamic eccentricities, tho
were modeled by disturbing the rotor’s location and consB

c stator armature currents, the remainder are the squirrel-cage
loop currents whose number is 34 or less depending on the pat-
tern of bar/connector breakages being simulated).

I1l. TSDM METHOD

The TSDM method, the second track of the dual-track ap-
proach, addresses the problem of differentiating various types
and degrees of motor drive faults. The TSDM method reveals
hidden patterns in time series data (current and voltage wave-
forms as well as time-domain torque profiles). A clear distinc-
tion is shown here between the various faulty and healthy modes
of motor operation. Our approach provides a definite new ad-
vantage over frequency-spectrum Fourier transform techniques
particularly used for fault diagnostics by earlier investigators
[6]-{17].

A process called time-delay embedding [30] is used to trans-
form the torque time series into a reconstructed state space, also
called a phase space. Given the first difference torque time series
AT = {A7r(k),k=2,...,N},whereAr = 7(k) — 7(k — 1),

k is atime index, andV is the number of observations, a two di-
mensional phase space is created by plotingk — 10) on the
xz—y plane’s abscissa anti7(k) on the ordinate. See Figs. 13
B4 for examples of such phase spaces.

This approach is based soundly in dynamical systems theory.
Takens showed that the time-delay embedding process is able
to reconstruct a topologically identical state space to the orig-
inal state space of the system [31]. Hence, the features that cap-
ture the similarities and differences of the reconstructed state
space are capturing similarities and differences of the under-
lying state structure of the system. We exploit this theoretical
relationship between the reconstructed state space and the orig-
inal state space to distinguish motor drive faults.

The feature used for distinguishing between reconstructed
phase spaces generated for different healthy and faulty modes of
motor operation is the so-called radius of gyration [32] (which
is used in this work as a fault identification parameter) around
the center of mass of the points in the phase space, where each
point in the phase space is given a unit mass. The radius of gy-
rationr is calculated as follows [32]:

-
S po et "

where the distancé(k) between the center of mass and itie

oint in the phase space is

quently its FE gr_id’s_location as shown schemati_cally in Fig. 6._ d(k)? = (x(k) — uo)2 + (z(k—1) - M)Q 2)
The schematic in Fig. 6 can represent the static and dynamic ) ) )
eccentricities depending on which of the two points separat@@d#o andu, the centers of mass for their respective dimen-
by the distanceg, are made to be the axis of rotor rotatiorp'0NS are

(for details [24] should be consulted further). In essence, in ZN*l+m (k)
static eccentricity the air gap takes the shape of a stationary [y = Sh=1Em
crescent-like pattern, while in dynamic eccentricity the air gap

= N_-1 ®3)

takes the shape of a continuously modulated revolving crescekdditionally, [ is the time lag of the phase spad¥, is the

The TSCFE-SS model yields the steady-state time-domaumber of observations, andk) is the time-series observa-
profiles of the change in all winding (loop) inductances undeion at time indext (see [30] for details of the time-delay em-
actual time-varying saturation conditions, and all the steadyedding process). It should be pointed out t#gt) is the dis-
state time-domain profiles/waveforms of the developed machitance of the;th phase-space “point” from the center of mass of
torque and all the 37 winding currents (three aredh&, and the phase-space “points.” Since we are using a two-dimensional
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phase space, which is formed by plottingk — ) on thez—y
plane’s abscissa andk) on the ordinate, the square of the dis-
tance is calculated by summing the squares of the differences
between the phase-space point’s value in each dimension and
its corresponding center of mass for that same dimension. The
valuey,, is the center of mass for each phase-space dimension.

This radius of gyration feature is a sufficient first approxi-
mation of the phase space to allow distinguishing between the
motor’s healthy mode of operation and various squirrel-cage
breakage faults being presented here. Itis also sufficient to iden-
tify the degree of the eccentricity, e.g., it allows the differen-
tiation between modes of operation of 10% and 30% degrees
of eccentricities. However, we introduce here a second featur®; 7-
which is required to differentiate between the dynamic and static
eccentricities of the same degree. This second feature is the stan-
dard deviatiorns of the radius of gyration, which is defined as
follows:

(N = DS (R~ (S d(h)?)
(N—D(N—1-1)

g =

-4

The algorithm for classifying the profiles is essentially a
two-step process. The first step categorizes all broken bar,
end-ring connector, and eccentricity faults. It also determines
the number of broken bars, number of broken end-ring connec-
tors, or the degree of the eccentricity. If required, the secopg g
step determines the type of eccentricity.

Given a motor’s time-domain torque first difference as a
time series (profile), and its corresponding reconstructed phase
space, the algorithm, for determining the unknown operating
mode of the motor from which the time-domain torque profile
was sampled, is best described as follows.

Algorithm IDENTIFY MODE (R, 7, X, o)

Input A setR = {ry,r9,...,7,} Of the radii of gyration

of the known operating modes, whetds the number of
known operating modes. The radius of gyration for the u
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to the standard deviation of the radius of gyration of
the unknown mode.

5) return the eccentricity mode of operation corre-
sponding to the index.

6) else returnthe mode of operation corresponding to
the index:.

Since the diagnostic algorithm is expected to run online, as
I;.;_ompared to the TSCFE-SS simulations, which are run offline,

known modey. A sety: = {oy,09,..., om } of the stan-

dard deviations of the radii of gyration for the eccentricit
modes of operation, where is the number of known ec-

centricity modes of operation. The standard deviation
the radius of gyration for the unknown mode,

it is important to study both its computational and memory
omplexity. An analysis of thedENTIFYMODE algorithm shows
hat it has both &(n) time and space complexity, whereis
the number of torque samples, hence, the algorithm can be run
in linear time. This is in comparison to any frequency based ap-

Output The identified mode of operation. Egosa;ht’ir;vgiir(;rrrilailzi i?; ;I;)e(faft Fo)ugﬁ;t?r;;fgérg éEanBe ‘;"i?;Ch
L R R . nlogn

i = H;dex(.nﬁjnﬂt; r|d " fethR})- gh,,e Int(:lei(h of O(n). Hence, from a processing complexity standpoint the

operator yields e findex of the mode wi © DENTIFYMODE algorithm is simpler than frequency-based

.CIQ.SeSt r_ad|us of gyration to fch_e unknown mode.. methods and could easily be implemented in real time.
2) if 7 is an index for an eccentricity mode of operation

3) then Form X’ a subset of with the standard de-
viations of the radii of gyration that have the same IV. TSCFE-SS BauLATIONS
degree of eccentricity as the mode of operation cor- Simulations of the healthy cage case, the 10% and 30%
responding to the index, For example if the index static and dynamic eccentricity cases, as well as the one, three,
1 corresponds to a 30% dynamic eccentridityhas six, and nine broken bar cases; the three, six, and nine broken
as elements the standard deviations of the radii ehd-ring connector cases were generated using our TSCFE-SS
gyration for the 30% static eccentricity and the 309%nethod. The resulting torque profiles for the simulation of
dynamic eccentricity. the healthy rotor/cage case; the 10% and 30% static and
4) j = index(min{lo’ — o| : ¢/ € ¥'}).The index dynamic eccentricity cases; and one broken bar case are given
operator yields the “index of the mode” with thein Figs. 7-12, respectively. The torque profile simulations for
closest standard deviation of the radius of gyratiotihe other cases were presented in [28]. The reconstructed phase
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Fig. 12. One broken bar torque profile.

Fig. 16. 10% dynamic eccentricity torque first difference phase space.
spaces of the torque first difference time series corresponding
to the torque profile simulations for the healthy rotor/cage Two concerns arise in relying on simulated datasets. The first
case and all the faulty rotor/cage cases mentioned above iaréhe reliability of the simulations. The first concern is ad-
illustrated in Figs. 13—24, respectively. dressed by comparing the resulting simulated profiles with the
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actual experimental profiles. Although we have not done this

with faulty motors, these experimental results have been col-The second concern is the computational requirements
lected on a healthy version of the motor under several operatimgeded to generate the simulations. The amount of digital
conditions [21], [22], [24]. processing, although not trivial, is less demanding than may



BANGURA et al: ECCENTRICITIES AND BAR/END-RING CONNECTOR BREAKAGES IN POLYPHASE INDUCTION MOTORS 1011

TABLE | TABLE 1l
RADIUS OF GYRATION FOR TRAINING PHASE SPACES RADIUS OF GYRATION FOR TESTING PHASE SPACES
Operating Mode Radius of Gyration Operating Mode Radius of Gyration
Healthy 0.0571 Healthy 0.0585
One Broken Bars 0.0892 One Broken Bars 0.0892
Three Broken Bars 0.0635 Three Broken Bars 0.0651
Six Broken Bars 0.1100 Six Broken Bars 0.1108
Nine Broken Bars 0.0999 Nine Broken Bars 0.0994
Three Broken Connectors 0.0247 Three Broken Connectors 0.0272
Six Broken Connectors 0.0432 Six Broken Connectors 0.0441
Nine Broken Connectors 0.0346 Nine Broken Connectors 0.0348
10'% Static Eccentricity 0.0466 10 % Static Eccentricity 0.0469
30 % Static Eccentricity 0.0480 30 % Static Eccentricity 0.0483
10 % Dynamic Eccentricity 0.0474 10 % Dynamic Eccentricity 0.0473
30 % Dynamic Eccentricity 0.0484 30 % Dynamic Eccentricity 0.0487
TABLE 1l TABLE IV
STANDARD DEVIATION OF THE RADIUS OF STANDARD DEVIATION OF THE RADIUS OF
GYRATION FOR TRAINING PHASE SPACES GYRATION FOR TESTING PHASE SPACES
Operating Mode Standard Deviation of Operating Mode Standard Deviation of
the Radius of Gyration the Radius of Gyration
10 % Static Eccentricity 0.0648 10 % Static Eccentricity 0.0648
30 % Static Eccentricity 0.0662 30 % Static Eccentricity 0.0662
10 % Dynamic Eccentricity 0.0654 10 % Dynamic Eccentricity 0.0653
30 % Dynamic Eccentricity 0.0663 30 % Dynamic Eccentricity 0.0664
; ; ; TABLE V
be expected. An average 4-s simulation takes approximately
. . ABSOLUTE DIFFERENCESBETWEEN TRAINING AND
36 min on a dual 2-GHz Pentium Xenon processor. All 12 TESTING RADII OF GYRATION (x 10~2) PART |
simulations take approximately 7 h if run on a single machine.
However, using a standard cluster computing system built H BlL__ B3 B6 B9 C3
on the Condor environment [33], the elapsed time for all H  0.143 3.069 0.503 5.151 4.136 3.384
simulations may be completed in far less time by running the Bl 0803 0.002 2567 2.080 1.066 6.454

B3 5368 2409 0.156 4.491 3.477 4.043
B6 4236 2.157 4.722 0.075 1.089 8.609
B9 2987 1.025 3.590 1.057 0.043 7.477

simulations of the various operating conditions in parallel.

V. RESULTS C3  0.648 6.199 3.634 8281 7.267 0.253

) i C6 2226 3.859 1294 5941 4927 2.593

From the TSCFE-SS model, we were able to obtain the time- C9  1.021 5437 2.872 7.519 6505 1.015
domain simulations for longer time duration than the one-cycle S10 0.879 4232 1.667 6.314 5300 2.220
time series shown in Figs. 7—12 for the various torque profiles. S30 0981 4.090 1525 6.173 5.158 2.362
Th iiv obtai . ¢ le” or “test” D10 0.840 4.193 1.628 6275 5.261 2259
us, one easily obtains an “out-of-sample” or “test” torque D30 0.143 4051 1486 6133 5119 2401

first difference time series for each of the 12 torque profile
(torque first difference) cases analyzed by time-delay embed-
ding and radius of gyration calculations. Accordingly, the ra- TABLE VI

dius of gyration as a classifying feature was confirmed in the ABSOLUTE DIFFERENCESBETWEEN TRAINING AND
. o N . TESTING RADII OF GYRATION (x1072) PART Il
out-of-sample” or “test” version of each motor mode of oper-

ation. The results are shown in Tables | and Il for the sample
simulations, and all compare well on a one-to-one correspon-

Coé C9 S10  S30 D10 D30
H 0.861 2.386 1.194 1.053 1.109 1.012

dence with the out-of-sample vglues given in Tables Ill and 1V, Bl 3932 5457 4265 4.124 4.180 4.083
for each case by case, respectively. For example, the sample or B3 1.521 3.046 1.854 1.713 1.769 1.672
training radius of gyration for the healthy motor mode of opera- 3(6 6?86 7.612 6420 6279 6335 6.238
tionis 0.0571, while the out-of-sample or testing radius of gyra- E; ;;23 8'47‘22 ?322 2(1)‘7‘; ;Sg? ;i?g
tion is 0.0585. The sample and out-of-sample radii of gyration C6  0.070 1596 0404 0263 0319 0222
for the one broken bar motor mode of operation are 0.0892 and C9 1.508 0.018 1.174 1315 1259 1.356
0.0892, respectively. Likewise, the sample and out-of-sample S10-0.303 1.223 0.031 0.110 0.054 0.151

- : N : L S30 0.161 1.365 0.173 0.031 0.087 0.009
radii of gyration for the 10% static eccentricity motor mode of

. _ DI0 0263 1.262 0.070 0.071 0.015 0.112
operation are 0.0466 and 0.0469, respectively. D30 0.122 1404 0212 0071 0127 0.030

The results of the classification algorithm are shown
in Tables V-VII. The headings for the tables are as fol-
lows: H—Healthy Motor, B1—One Broken Bar, B3—ThreeC3—Three Broken Connectors, C6—Six Broken Connectors,
Broken Bars, B6—Six Broken Bars, B9—Nine Broken Barg;9—Nine Broken Connectors, S10—10% Static Eccentricity,
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TABLE VII VII. CONCLUSIONS
ABSOLUTE DIFFERENCESBETWEEN TRAINING AND TESTING STANDARD

DEVIATION OF THE RADII OF GYRATION (x1072) PART Il In conclusion, this paper has presented s the integration of

the TSCFE-SS method, which can generate a large number of

S10 830 D10 D30 faulty and healthy IMASD simulations, with the TSDM tech-
g;g g-‘l’gg 0.140 g-ggg g-(l)ﬁ nique, which can automatically characterize and predict IMASD
D10 0.052 g‘gg‘l' 0.008 0.106 modes of operation. The method was shown to enable one to
D30 0.160 0.017 0.100 0.002 differentiate between types of faults such as dynamic and static

eccentricities and distinguish them from squirrel-cage break-
ages. The method also distinguishes between the degrees of fault

S30—30% Static Eccentricity, D10—10% Dynamic Eccers€Verities such as percentage eccentricities and number of bar as

tricity, and D30—30% Dynamic Eccentricity. The first cqumnWeII as connector breakages. Once again, it should be reempha-

ives the actual mode of operation. The first row indicat sized that the fault classification achieved by this methodology
g - . P ’ § robust, in the sense that for most of these fault classifications
the training radius of gyration that was used. The cells

Tables V and VI heTraini di ¢ . ) e next nearest class (other than the fault’s calls) has absolute
aples v an are theTraining radius of gyration (given difference of radii of gyration that is one to two orders of magni-

by the column heading)- Testing radius of gyration (given y 4 greater than the correct (fault) class. Hence, this dual-track
by the row heading) The minimal difference in each row 5n5r65ch could be used to head off the costly and catastrophic
and, thus, the classification for all but the eccentricity mOthascading of IMASD faults that lead to plant shutdowns and

modes of operation, is bolded. The cells of Table VIl are they facilitate the creation of efficient and effective maintenance
|Training standard deviation of the radius of gyration (give§:hedules.

by the column heading} Testing standard deviation of the
radius of gyration (given by the row head|ndhe minimal
difference in each row and, thus, the classification, is bolded.
The results illustrated in Tables V=VII confirm the validity of
the approach, because of the small magnitudes of the absolutg] M. E. H. Benbouzid, “Bibliography on induction motors faults de-
differences of these bolded radii of gyration and the absolute ~ection and diagnosis JEEE Trans. Energy Conversiprol. 14, pp.
differences of these standard deviations of radii of gyration, in[2] s.J. Manolas and J. A. Tegopoulos, “Analysis of squirrel cage induction
comparison to all the other differences in the tables (matrices). ~ motors with broken bars and ringdEEE Trans. Energy Conversipn

. . vol. 14, pp. 1300-1305, Dec. 1999.
We can see in Table VI why a two-step process of classifica-[3) p. . Dorrell, W. T. Thomson, and S. Roach, “Analysis of airgap flux,

tion is required for eccentricity faults. If we use only the radius current, and vibration signals as a function of the combination of static
; 0 : PR ; e 0 and dynamic airgap eccentricity in three-phase induction motitt&E
of gyra‘_uon, the 3Q /o static eccentrlc_:lty is m_lsclassmed asa 3Q % Trans Ind. Applicat.vol. 33, pp. 24-34, Jan./Feb, 1997,
dynamic eccentricity. However, as is seen in Table VII, by using [4] R. F. Walliser and C. F. Landy, “Assessment of interbar currents in
iati i _ double-cage induction motors with broken bal&EE Trans. Energy
thg second step and the standard de\{lgtlon of the radius of gy Conversionvol. 9. pp. 159-164. Mar. 1094,
ration, all faults can be correctly classified. [5] S.Williamson and K. Mirzoian, “Analysis of cage induction motors with

In other words, the classification accuracy on the out-of- igaégrvlvgllfgng fiilulltg,s’lEEE Trans. Power App. Systol. PAS-104, pp.
. . g . — , July .
sample or testing data is 100%. Beyond the classification aC1g) W. T. Thomson, D. Rankin, and D. G. Dorrell, “On-line current moni-
curacy, it is significant to point out that the classifications are  toring to diagnose airgap eccentricity—an industrial case history of large

robust in the sense that for most of the classifications the next V. three-phase induction motor$ZEE Trans. Energy Conversiopp.
1372-1378, Dec. 1999.

nearest class has absolute difference of radii of gyration that ig7] M. A. Cash, T. G. Habetler, and G. B. Kliman, “Insulation failure pre-

one to two orders of magnitude greater than the correct class.  diction in ac machines using line-neutral voltage&EE Trans. Ind.
Applicat, vol. 34, pp. 1234-1239, Nov./Dec. 1998.

[8] A. Bethge, P. K. W. Lo, J. T. Phillipson, and J. R. Weldner, “On-line
monitoring of partial discharges on stator windings of large rotating ma-
VI. LARGE-SCALE IMPLEMENTATION chines in the petrochemical environmernE&EE Trans. Ind. Applicaf.
vol. 34, pp. 1359-1365, Nov./Dec. 1998.

This proactive approach to fault diagnostics could head off[9] S. Chen and T. A. Lipo, “Bearing currents and shaft voltages of an in-

. . duction motor under hard-and soft-switching inverter excitatitBEPE
the costly and catastrophic cascading of faults that lead to plant ;s nd. Applicat.vol. 34, pp. 1042—1048, Sept./Oct. 1998.

shutdowns and consequent long repair/maintenance period$0] M. E. H. Benbouzid, H. Nejjari, R. Beguenane, and M. Vieira, “In-

; ; [T ; in ; duction motor asymmetrical faults detection using advanced signal
The resulting fault identification and diagnostic information processing techniques|EEE Trans, Energy Conversionol. 14, pp.

also can be used to facilitate the creation of efficient and  147-152, June 1999.

effective maintenance schedules based on accurate classifill F. Filippetti, G. Franceschini, C. Tassoni, and P. Vas, "Al techniques in
ti f th t d stat f incipient fault iated induction machines diagnosis including the speed ripple effteEE
cation of the nature and status of incipient faults associated  yans. ind. Applicat.vol. 34, pp. 98-108, Jan./Feb. 1998.

with a particular motor drive. Future research directiong12] A. J. M. Cardoso, S. M. A. Cruz, and D. S. B. Fonseca, “Inter-turn

; ; stator winding fault diagnosis in three-phase induction motors, by Park’s
mplude studymg current waveforms, greater numbers_ of faults, vector approach JEEE Trans, Energy Conversiool. 14, pp. 595-598,
direct comparisons to frequency-based methods, impact of sept. 1999.

pulsewidth-modulation (PWM) control. and various load[13] R.R.Schoen and T. G. Habetler, “Evaluation and implementation of a
! system to eliminate arbitrary load effects in current-based monitoring

conditions. Hence, this technique has significant potential in of induction machines,”EEE Trans. Ind. Applicat. vol. 33, pp.
applications to key induction motor ASDs such as in important  1571-1577, Nov./Dec. 1997.

. . - P 4] A. Murray and J. Penman, “Extracting useful higher order features for
process industries and similar applications where eXtende[a condition monitoring using artificial neural networkslEEE Trans.

maintenance downtimes cannot be tolerated. Signal Processingvol. 45, pp. 2821-2828, Nov. 1997.
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