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Fig. 5. Training stage air-gap torque proÞles (signals) for the simulated 2-hp
motor. (a) MAGSOFT simulation. (b) With dc offset removed. (c) Low pass
Þltered. (d) Final normalized torque signal.

A. Training Stage

During the training stage, this method generates signa-
tures for a healthy and faulty three-phase, 2-hp, two-pole,
60-Hz, 460-V, squirrel-cage induction motor simulated in
Flux2D-MAGSOFT TSFE software at rated load and speed
[16], [28]. These signatures are generated from the air-gap
torque proÞle of the healthy and faulty operating condition
obtained directly from the simulations at a sampling frequency
of 2 kHz. Here, the faulty condition is that of a motor with
one broken rotor bar. Experimental data can be used instead
of simulation data in this training stage. The algorithm of the
training stage containsÞve steps as illustrated in Fig. 4.

In theÞrst step, MAGSOFT generates time-domain proÞles
of the air-gap torque signals for the healthy and faulty cases. One
second of the air-gap torque proÞle (signal) for the one broken
bar case is shown in Fig. 5(a).

The second step is the preprocessing of the torque signal.
In this step, the torque signal is normalized to allow the re-
sulting signatures from the training stage to be used on the fault
monitoring of different induction motors. This preprocessing
step also removes the high frequency components of the torque
signal and normalizes it. To minimizeÞltering errors, the dc
offset is eliminated as shown in Fig. 5(b). The torque signal
is Þltered by a sixth-order low-pass elliptic digitalÞlter with
a cutoff frequency of 100 Hz, a passband of 0.1 dB, and a
stopband of 50 dB [29]. The resultingÞltered signal is shown
in Fig. 5(c). Finally, the torque signal is normalized to zero
mean and unit standard deviation. An example of the normal-
ized air-gap torque signal is shown in Fig. 5(d).

The third step is determine the RPS dimension,, and the time
lag, , using the FNN and automutual information techniques,
respectively. The FNN and automutual information methods are
described above in Section II-D.

The fourth step generates RPSs according to (2). One RPS
is constructed from the torque signal of the healthy simulated

motor. A second RPS is constructed from the torque signal of
the simulated motor with one broken bar.

TheÞfth and last step learns the GMM signatures. This step
consists of constructing a Gaussian mixtures model (GMM)
[22], [26] from each of the RPSs. The resulting models are the
signatures of each motor operating condition. Thus, this method
builds one GMM for the healthy case and one GMM for the
faulty case.

The number of mixtures is determined empirically by ana-
lyzing training set accuracy across a range of number of mix-
tures [1]. The classiÞcation accuracy tends toward an asymptote
as the number of mixtures increase. Thus, the lowest number of
mixtures that yields the highestaccuracy for a given training set
is chosen and this number become a constant in this monitoring
method even for monitoring of motors different from the one
used in the training stage. This approach yielded four mixtures
as the best for the proposed monitoring method.

Meanwhile, a reference frequency for the torque normaliza-
tion process of the monitoring (testing) stage is calculated, see
Fig. 5(d). The reference frequency is the frequency of theÞl-
tered and normalized air-gap torque, , which is given
as follows:

(6)

where is the slip and is the operating frequency of the
motor used in the training stage. The frequency as well
as the synchronous and the rotor speeds used to calculate the
slip are readily obtained from MAGSOFT software. The
simulated faulty motor with rotor speed of 3511 r/min, yielded
a normalized torque frequency , equal to 2.96 Hz as
shown in Fig. 5(d). This normalized torque frequency ,
is used during the monitoring stage as shown next.

B. Monitoring Stage

The monitoring (testing) stage, illustrated in Fig. 6, uses
datasets experimentally acquired from actual induction motors
and can be divided into the following steps described below.

First, the air-gap torque and rotor speed are estimated from
the acquired voltage and current signals of the actual test motor.
The air-gap torque is computedusing a torque estimator ac-
cording to (1) of Section II-B.A resulting estimated air-gap
torque signal is illustrated in Fig. 7(a) for the 5-hp motor at rated
speed and full load with four broken bars.

Next, segments of one second of the torque signal are prepro-
cessed using the same approach used during the training stage,
i.e. dc offset elimination, low passÞltering, and zero mean and
unit standard deviation normalization. This normalizes the am-
plitude of the torque signal. The resulting signals are illustrated
in Fig. 7(b) with the dc offset removed and Fig. 7(c) withÞltered
and amplitude normalized torque signal for the 5-hp motor.

Third, a frequency normalization process is performed on
the torque signal. The frequency of the fundamental component
of the air-gap torque for the test motor, , is given as
follows:

(7)
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That is why motor signatures were built from torque rather than
current signals alone.

VI. CONCLUSION

In this paper, a new technique for induction motor fault mon-
itoring was presented. In this method, the air-gap torque pro-
Þle was analyzed in order to identify the induction motor op-
erating condition as either healthy or faulty, in which case the
faulty condition represents thepresence of one or more broken
bars. The main advantages of this method are twofold. First,
this technique, which was found to be robust, was trained with
a dataset generated from a simulated motor, which avoided de-
structive tests to train this method. The datasets of the moni-
toring stage were obtained from experimental setups with ac-
tual motors of various designs. The fault classiÞcation accuracy
was 100% at full load. Second, the novel torque normalization
process of the monitoring stage normalizes the amplitude and
frequency of the air gap torque signals during the monitoring
stage to have similar amplitude and frequency when compared
with the signatures from the training stage. As a result, this mon-
itoring method which was trained for a simulated 2-hp induction
motor can monitor the operating condition of actual induction
motors with different levels of load torque and operating fre-
quency, as well as design speciÞcations, such as power rating
(the case-study 5 hp motor tested in the laboratory) and number
of poles, which are different from the TSFE simulated motor
used in the training stage. This is because of the fact that this
novel torque normalization process leads to “generic” signa-
tures which are independent of these parameters. The experi-
mental results presented here evidenced the robustness and scal-
ability of the method, which yielded good motor fault classi-
Þcation accuracy. Thus, this monitoring method based on the
air-gap torque proÞle analysis can be a powerful tool for induc-
tion motor fault classiÞcation.
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