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Abstract—A new signal classification approach is presented that is based upon

modeling the dynamics of a system as they are captured in a reconstructed phase

space. The modeling is done using full covariance Gaussian Mixture Models of

time domain signatures, in contrast with current and previous work in signal

classification that is typically focused on either linear systems analysis using

frequency content or simple nonlinear machine learning models such as artificial

neural networks. The proposed approach has strong theoretical foundations

based on dynamical systems and topological theorems, resulting in a signal

reconstruction, which is asymptotically guaranteed to be a complete

representation of the underlying system, given properly chosen parameters. The

algorithm automatically calculates these parameters to form appropriate

reconstructed phase spaces, requiring only the number of mixtures, the signals,

and their class labels as input. Three separate data sets are used for validation,

including motor current simulations, electrocardiogram recordings, and speech

waveforms. The results show that the proposed method is robust across these

diverse domains, significantly outperforming the time delay neural network used

as a baseline.

Index Terms—Signal classification, reconstructed phase spaces, Gaussian

mixture models.
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1 INTRODUCTION

MOST work in signal classification or identification is based on
linear systems analysis, using features based on a frequency
domain representation. There is also extensive work on signal
detection and classification in the field of communications, based
on statistical decision theory [1]. Alternatives to these established
approaches include nonlinear classifiers such as neural networks
or support vector machines, as well as clustering and similarity
measurement techniques from the relatively new field of time-
series data mining [2]. Many existing time-domain approaches to
the task of signal classification are based on the existence of a fairly
simple underlying pattern, or template, that is either known
a priori or can be learned from the data. In the case of real signals
with complex underlying systems, such as cardiac, speech, or
electric motor systems, such a simple pattern rarely exists.
Frequency-based techniques are based on the existence of spectral
patterns, which from a random processes perspective capture only
the first and second order characteristics of the system. Recently,
studies in dynamical systems and chaos theory have led to new
types of signal models based on reconstructed phase spaces (RPSs),
and to new signal classification approaches, for example using
dynamical invariants as features [3], [4], [5], which can capture
information beyond that of a basic spectral representation.
However, little work has yet been done in directly modeling

signals in the reconstructed phase space, which is the approach
introduced here for classifying time series. A statistical learner is
applied to the space, and the resulting maximum likelihood
classifier is compared to a baseline time delay neural network
(TDNN) approach. Experiments are conducted across three
substantially different application areas: electric motor fault
detection, heart arrhythmia classification, and speech phoneme
recognition.

The importance of accurate signal classification methods can be
seen in the breadth of application areas. For example, electric
motor fault diagnosis is an important and widely studied
industrial problem [6]. Although electric motors are generally
reliable, there are currently no effective mechanisms for identifying
a wide range of fault types and their corresponding severities,
which is essential for detecting faults before they become
catastrophic. Another application is the classification of heart
arrhythmias. Electronic therapy, which requires the rapid and
accurate classification of a heart rhythm, is the preferred method to
terminate ventricular fibrillation (VF). There is evidence to suggest
that the sooner electronic therapy is delivered following the onset
of VF, the greater the success of terminating the arrhythmia and,
thus, the greater the chance of survival [7]. The methods used in
current practice typically require five or more seconds of data to
classify an arrhythmia, so a signal classification method that could
accurately classify heart arrhythmias in less than five seconds
would be clinically beneficial. In the speech recognition domain,
where the signal is the acoustic waveform corresponding to a basic
sound unit called a phoneme, improvements in phoneme
classification yield corresponding improvements in system recog-
nition accuracy.

Background of the underlying dynamical system’s theory and
an overview of previous work in this area is given in Section 2. The
proposed method is presented in Section 3, with a discussion of the
data sets in Section 4. Section 5 reviews experimental results, and
conclusions are presented in Section 6.

2 BACKGROUND

The theoretical basis for our new signal classification algorithm

comes from the work of Takens [8] and Sauer et al. [9]. This work

shows that a time series of observations sampled from a single

state variable of a system can be used to reconstruct a space

topologically equivalent to the original system. The construction of

such an RPS or phase space embedding is straightforward. Given a

time series x ¼ xn; n ¼ 1 . . .N , an RPS matrix X of dimension d

and time lag � is defined by its row vectors:

xn ¼ xn�ðd�1Þ� � � � xn�� xn
� �

; ð1Þ

where n ¼ 1þ ðd� 1Þ�ð Þ . . .N . A row vector xn is a point in the RPS.

The sufficient condition for topological equivalence is that d is

greater than twice the box counting dimension of the original

system [9]. When d is not known, as is the case for most real

systems, it may be estimated using the false nearest-neighbor

technique [10], which calculates the percentage of neighboring

points which are near because of projection rather than dynamics.

In Takens’ original work, � ¼ 1. However, in practice, it has been

found that the appropriate selection of the time lag can reduce the

required RPS dimension. A common heuristic for determining

time lag is to use the first minimum of the automutual information

function [10].
Because of the representational capability of RPSs, the proposed

classification algorithm is theoretically capable of differentiating
between signals generated by topologically different systems. It
can differentiate between deterministic nonlinear signals with
identical linear characteristics, but different nonlinearities. In
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addition, the proposed method, because of the use Gaussian

Mixture Models (GMMs), is robust to additive noise components.

This theoretical capability is demonstrated empirically across three

complex real-world application domains: electric motor fault

detection, heart arrhythmia classification, and speech phoneme

recognition.
Dynamical systems techniques have been used in many

applications. Lyapunov exponents have been used as features for

classifying chaotic [3], acoustic [4], and speech [5] signals. Estimates

of dimensions have been applied to such areas as speech production

[11] and heart rate variability [12], [13]. Topological approaches

have been used to analyze a variety of signals and systems,

including speech signals [14], chaotic systems [15], voltage wave-

forms [16], and convection processes [17]. The most similar work to

the approach proposed here is Kadtkes [18]. Whereas Kadtke’s

approach builds global vector reconstructions and differentiates

signals in a coefficient space, our approach builds GMMs of signal

trajectory densities in an RPS and differentiates between signals

using a Bayesian classifier.

3 METHOD

As discussed above, our approach to signal classification is to build

GMMs of signal trajectory densities in an RPS and differentiate

between signals using a Bayesian classifier. This is done in three

steps. The first step, data analysis, includes normalizing the signals

and estimating the time lag and dimension of the RPS. The second

step is learning the GMMs for each signal class. The final step is

signal classification, which is done with a maximum likelihood

Bayes classifier.

3.1 Data Analysis

Each signal is normalized to zero mean and unit standard

deviation. The time lag is calculated for each normalized signal

using the first minimum of the automutual information function

[10]. See Fig. 1 for an example automutual information plot with a

first minimum at 11. An overall time lag is selected using the mode

of the histogram of the first minima of the automutual information

function for all signals. The RPS dimension for each signal is

calculated using the global false nearest-neighbor technique [10].

See Fig. 2 for an example plot of the false nearest neighbors by

dimension with an indicated dimension of six. Because we want

most of the signals to unfold completely in the RPS, the overall RPS

dimension is selected as the mean plus two standard deviations of

the distribution of individual signal RPS dimensions.

3.2 Gaussian Mixture Models

The second step of the approach is to learn a GMM probability

distribution for each signal class. This is done by creating an RPS

using the time lag and dimension determined in the previous step

and inserting all the signals for a particular class into this space as

described by (1) above.
A GMM is defined as:

p xð Þ ¼
XM

m¼1

wmpm xð Þ ¼
XM

m¼1

wmN x;��m;��mð Þ; ð2Þ

where M is the number of mixtures, N x;��m;��mð Þ is a normal
distribution with mean ��m and covariance matrix ��m, and wm is
the mixture weight with the constraint that

P
wm ¼ 1. The

required number of mixtures is related to the underlying
distribution of the RPS density. The classification accuracy tends
toward an asymptote as the number of mixtures increases
provided there is sufficient training data. The parameters for the
GMM are estimated using the well-known Expectation-Maximiza-
tion (EM) algorithm [19]. This iterative method yields a Maximum
Likelihood (ML) estimate, via the estimation formulas:

�0
m ¼

PT

t¼1

pm xtð Þxt

PT

t¼1

pm xtð Þ
;

�0
m ¼

PT

t¼1

pm xtð Þ xt � �mð ÞT xt � �mð Þ

PT

t¼1

pm xtð Þ
;

w0
m ¼

PT

t¼1

pm xtð Þ

PT

t¼1

PM

m¼1

pm xtð Þ
:

ð3Þ
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Fig. 1. Automutual information of an ECG signal. Fig. 2. Global false nearest neighbor of an ECG signal.

Fig. 3. Gaussian mixture model of an ECG reconstructed phase space.



An illustration of a GMM over an RPS is shown in Fig. 3, where

the principle axes of the ellipses indicate one standard deviation of

each mixture in the model.

3.3 Classification

The last step of the algorithm is to classify test signals. Signals to be

classified are first normalized and then embedded in an RPS. Using

the GMMs learned for each class of signals as described above, the

signal is classified using a Bayesian maximum likelihood classifier.

This is accomplished by computing the conditional likelihoods

of the signal under each learned model and selecting the model

with the highest likelihood. The likelihoods are computed on a

point-by-point basis from the learned models:

p Xjcið Þ ¼
YN

n¼1þðd�1Þ�
p xnjcið Þ; ð4Þ

where X is an RPS matrix of dimension d and time lag � of the

signal, xn is a point in the RPS, and p xnjcið Þ is the probability of xn

given the ith class, calculated using (2). The classification is

ĉc ¼ argmax
i

p Xjcið Þ; ð5Þ

where ĉc is the maximum likelihood class.

3.4 Algorithms

An algorithmic description of our approach is provided in Table 1.

The learnModels function generates a GMM for each signal class

given a set of labeled signals and the number of mixtures to use for

the GMM. The classify function classifies a signal using the GMMs

generated by learnModels. Two secondary functions are also

described. The determineTimeLag and determineDimension

functions calculate the time lag and dimension for the RPS,

respectively. A MATLAB implementation of this algorithm is

available from http://povinelli.eece.mu.edu/itr-speech/.

4 TIME SERIES DATA SETS

We apply our technique to three data sets one simulated and two

real. The first data set is generated from a sophisticated simulation

of electric motor current signals. The second data set is a collection

of electrocardiogram (ECG) signals. The third data set is from the

TIMIT speech corpus [20].

4.1 Simulated Motor Current

The first data set consists of simulated electric motor current
signals. Because the field collection of electric motor fault data for a
wide range faults is very labor intensive and time consuming, we
use advanced motor simulations. The signals are current wave-
forms generated using the time stepping coupled finite element
state space (TSCFE-SS) method [21]. The TSCFE-SS approach is a
coupling of a finite element model of the magnetic circuits with a
circuit network model. The simulations are of the motor dynamics
and include the nonlinear effects of magnetic saturation. In this
case, the A phase current was generated for a 208-volt, 60-Hz, 2-
pole, 1.2-hp, squirrel cage 3-phase induction motor using a finite
element grid with 2,295 nodes and a 37th order state model.

Twenty-one different motor operating conditions, including 1-

10 broken bars, 1-10 broken end-ring connectors, and a healthy

operating mode, are simulated. For each motor operating condi-

tion, 20 time series, each with a length of 1,500 points and a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004 781

TABLE 1
Algorithmic Description of Approach



sampling rate of 33.3kHz, are generated. This yields a data set of

420 signals divided into 21 classes. The motor data set has been

donated to the UCR Time Series Data Mining Archive.

4.2 Electrocardiogram

This second data set was obtained from six patients during

intercardiac defibrillator implantation. Data was collected from

lead V1 of a 12 lead ECG. The signals were antialias filtered with a

cutoff frequency of 200 Hz and, subsequently, digitized at 1,200 Hz.

Because the data was collected during surgery and the chest was

open, the lead placements were not ideal. Four rhythms were

observed: normal sinus rhythm (SR) and three arrhythmias—mo-

nomorphic ventricular tachycardia (MVT), polymorphic ventricu-

lar tachycardia (PVT), and ventricular fibrillation (VF). Data was

labeled by two experts, who initially agreed on 80 percent of the

beat-by-beat classifications. After consultation, they concurred on

the remaining 20 percent. The data set was divided into two-

second (2400 point) segments, yielding 153 SR, 63 MVT, 58 PVT,

and 57 VF time series.

4.3 TIMIT Speech Corpus

The last data set is 417 phonemes from the TIMIT speech corpus

speaker MJDE0 [20]. The speech signals were sampled at 16KHz.

The phoneme signals are of lengths varying from 227 to 5,201

samples, with phoneme boundaries and class labels determined by

a group of experts. Of the 417 phonemes, six were spoken only

once and one of the standard 48 classes did not occur in this data

set, hence, there are 47 classes.

5 EXPERIMENTS AND RESULTS

Our new approach described above in Table 1 is applied to the

three data sets also described above. The new method is compared

to a time delay neural network (TDNN) [22], which is used as a

nonlinear one step predictor. The TDNN classifications are made

using minimum prediction error. A 10-fold cross-validation

approach is used to compare the methods. The folds are formed

in a statistically balanced manner across classes. The same folds are

used to train both learners and test both classifiers.
The number of inputs to the TDNN is the dimension of the RPS.

Thus, both methods are working with the same number of inputs.
The TDNN has two hidden layers. Given d inputs to the TDNN,
there are d neurons in the first hidden layer,

ffiffiffi
d

p� �
neurons in the

second hidden layer, and one output neuron. The hidden layers
use tansig transfer functions, and a linear transfer function is used
for the output.

The signals are normalized to zero mean and unit variance for
both methods. The TDNN is trained for 25 epochs. Similarly,

25 iterations of the EM algorithm are used in our new method. The
classification accuracy across data sets and number of mixtures is
shown in Fig. 4. The expected asymptotic accuracy curves are seen
for all data sets with the exception of the 32-mixture speech result,
which is shows a decrease in mean accuracy. This is most likely
due to insufficient training data.

The TDNN classification accuracies including one standard
deviation results for the ECG, motor, and speech data sets are
50:8� 8:2%, 6:0� 1:7%, and 31:9� 7:6%, respectively. The new
method’s accuracy results are statistically greater than the TDNN
accuracy results at an � ¼ 0:001 level across all data sets and all
number of mixtures. The greatest difference between the two
approaches is seen in the motor data set. This is most likely due to
the sinusoidal nature of the signal. The differences between motor
current waveforms are seen across many ac cycles through an
envelope that modulates the sinusoid. It appears that the TDNN,
which performed barely above chance (4.8 percent), has captured
the sinusoidal nature of the signal, which is common across all
classes, but not the envelope, which varies across classes.

The mean computational performance of the new method is
given in Fig. 5 for both training and testing across all classes and
number of mixtures. The experimental platform was a dual
2.0GHz Pentium 4 processor Windows 2000 machine with 1GB
of main memory. However, the algorithm runs on only one of the
processors. The computational cost is linear in the number of
mixtures for both training and testing. The computational cost is
comparable to that of the TDNN method as is seen in Table 2. The
I/O load is not a significant component of the computational
performance.

6 CONCLUSIONS

The results from these three complex and real-world data sets

show that this new approach can be successfully applied to a

variety of signal classification problems. The new approach, with

minimal input tuning (only the number of mixtures), can capture

the dynamics of distinctly different categories of signals (motor

current, heart ECG, and speech). This is in contrast to the TDNN
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Fig. 4. Classification accuracy of new method with one standard deviation error

bars. Fig. 5. Computational performance of the new method.

TABLE 2
Computational Results for 16 Mixtures and TDNN

(s, mean � one standard deviation)



approach which performs significantly worse across all data sets.

The advantage of our new approach is that it is able to capture an

equivalent to the dynamics of the original system. This advantage

is translated into higher classification accuracies in comparison to a

TDNN approach across the three data sets tested in this work.

Future work will investigate capturing the trajectory of the

attractor in addition to its density.
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