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Abstract: Extreme cold events in natural gas demand are characterized by unusual
dynamics that makes modeling the characteristics of the gas demand during
extreme cold events a challenging task. This unusual dynamics is in the form
of hysteresis, possibly due to human behavioral response to extreme weather
conditions. To natural gas distribution utilities, extreme cold events represent
high risk events given the associated huge demand of gas by their customers.
To understand the nature of the unusual dynamics and help utilities in their
decision-making process, we present a semi-supervised learning algorithm that
identifies extreme cold events in natural gas time series data. Using phase space
reconstruction, the input space is mapped into a phase space. In the reconstructed
phase space, events with similar dynamics are closer together, while events with
different dynamics are far apart. A cluster containing extreme cold events is
identified by finding the nearest neighbors to an observed cold event. The learning
algorithm was tested on natural gas consumption data obtained from natural
gas local distribution companies. Our RPS-kNN algorithm was able to identify
extreme cold events in the data.

Keywords: Reconstructed Phase Space; Nearest Neighbor; Semi-supervised
learning; Extreme Cold Events; and Energy Forecasting.

Reference to this paper should be made as follows: Ishola, B., Povinelli, R.,
Corliss, G. and Brown, R. (2016) ‘Identifying Extreme Cold Events Using Phase
Space Reconstruction’, Int. J. Applied Pattern Recognition, Vol. x, No. x, pp.xx-xx.

Biographical notes: Babatunde Ishola is pursuing an M.S. degree in Electrical
and Computer Engineering at Marquette University. He received his B.S. degree
in Electronic and Electrical Engineering from Obafemi Awolowo University,
Nigeria, in 2012. He is currently a supported Graduate Research Assistant on the
GasDay Project at Marquette University.

Richard J. Povinelli received the B.S. degree in electrical engineering and B.A.
degree in psychology from the University of Illinois, Champaign-Urbana, IL,
USA, in 1987, the M.S. degree in computer and systems engineering from
Rensselaer Polytechnic Institute, Troy, NY, USA, in 1989, and the Ph.D. degree

Copyright © 2016 Inderscience Enterprises Ltd.



2

in electrical and computer engineering from Marquette University, Milwaukee,
WI, USA, in 1999. From 1987 to 1990, he was a Software Engineer with General
Electric (GE) Corporate Research and Development. From 1990 to 1994, he
was with GE Medical Systems, where he served as a Program Manager and
then as a Global Project Leader. From 1995 to 2006, he consecutively held the
positions of Lecturer, Adjunct Assistant Professor, and Assistant Professor with
the Department of Electrical and Computer Engineering, Marquette University,
Milwaukee, WI, USA, where, since 2006, he has been an Associate Professor.
His research interests include signal processing, machine learning, and chaos
and dynamical systems. He has authored and coauthored over 60 publications in
these areas.

George Corliss is professor of electrical and computer engineering at Marquette
University and Senior Scientist of the GasDay Project. He received his B.A. in
mathematics for the College of Wooster (Ohio) and his Ph.D. in mathematics
from Michigan State University. He has taught and worked at the University of
Nebraska, Lincoln, University of Wisconsin, Madison, Swiss Federal Institute
of Technology, Argonne National Laboratory, Karlsruhe Institute of Technology
(Germany), Compuware Corp., and Marquette University, as well as in several
industrial and consulting positions. His research interests include scientific
computation and mathematical modeling, guaranteed enclosures of the solutions
of ordinary differential equations, industrial applications of mathematics and
scientific computation, numerical optimization, automatic differentiation, and
software engineering. He teaches courses in engineering design, computer
architecture, operating systems, database design, and software engineering.

Dr. Ronald H. Brown is Associate Professor of Electrical and Computer
Engineering at Marquette University and the founding Director of Marquette
UniversityâŁ™s GasDay Project. Dr. BrownâŁ™s research is in system
modeling, identification, prediction, optimization, and control. The applications
of his research has been focused on natural gas distribution and transmission since
1993, when the GasDay Project was founded as a means to connect students with
the many industrial partners who support the labâŁ™s work. Over the course of
the project he has worked with more than 150 undergraduate students from four
colleges at Marquette directly participating in the project, and many more who
have participated through classroom assignments that have âŁžborrowedâŁž
project ideas from GasDay. He is a frequent presenter at energy industry meetings
and consultant to many energy companies looking for guidance in planning for
daily and peak load conditions.

1 Motivation

The most important days in natural gas demand forecasting include the days when demand
is at its peak. It is important to forecast gas demand accurately during this period because it
helps in infrastructure, supply, and operational planning (Lyness (1981)). Residential and
commercial gas demand increases as the temperature decreases since homes and businesses
use more natural gas for space heating as it gets colder(Vitullo et al. (2009)). The highest
gas demand occurs during extreme cold events. An extreme cold event is a multi-day event
for which the temperature is below a given threshold (specified by 1-in-n years) for several
consecutive days with a characteristic response in gas demand in the form of hysteresis
(see Figure 1). A 1-in-n temperature denotes the temperature which occurs as infrequently
as once every n years. Extreme cold events are by nature rare, so they are not represented
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adequately in gas demand data, leading to high forecast error during extreme cold events.
Considering the financial implications as well as physical limits to the amount of gas supply
that can be made available during an extreme cold event, it is important to identify extreme
cold events in natural gas demand data. Identifying these events enables us to improve the
gas demand forecast during such events, which may represent the most challenging days
of the year for operational gas forecasters because their gas delivery systems are operating
near their maximum capacities.

1.1 Behavioral Response

In addition to the infrequent nature of extreme events, they are also characterized by some
interesting behaviors. Generally, gas demand varies linearly with temperature. For extreme
cold events however, this relationship becomes non-linear. An unusual response in gas
consumption in the form of hysteresis has been observed during the extreme cold events.
Figure 1 shows the plot of daily natural gas consumption (flow) against wind-adjusted
temperature (labeled HDDW), spanning a period of ten years. Figure 1b is a replica of
Figure 1a with emphasis on the behavior of interest. The straight lines connect instances of
natural gas consumption versus wind-adjusted temperature for five consecutive days. The
days in the series identified by the lines represents the consumption for days t� 2, t� 1,
t, t+ 1, and t+ 2, with t being the coldest day in the event. The flow for the day after the
coldest day (t+ 1) is much higher than the flow for day t, even though the temperature is
warmer. Apparently, people tend to use more gas even when it is not as cold as the day
before.

Part of this response is due to thermodynamic effects, as heat transfer is a dynamic
process. There is a certain time-lag relating the reported (outside) temperature to the actual
temperature (inside the building). The lag factor depends on the building’s insulation
system. Murat (2011) provides a good insight into the effect of thermodynamics on space
heating in buildings. Attempts have been made to model the thermodynamics component
by adjusting the forecast model for prior day weather effects as shown by Vitullo et al.
(2009), and Brown and Matin (1995). The hypothesis here is that there is an unmodeled
behavioral component, possibly due to human responses to extreme temperature and/or
temperature changes (see Kalkstein et al. (1986), Brown (2014a), and Brown (2014b)),
since the response to extreme cold events appears different from typical days.

In the next section, we will build a gas demand forecast model and observe the model’s
performance during extreme cold events.

1.2 Gas Demand Forecast Model

This section describes a base line gas demand model that will referenced throughout this
paper. This base model is an ensemble of multiple linear regression (MLR) and artificial
neural networks (ANN). The MLR model is a 13-parameter linear regression model

bSt = �0 +

13X
i=1

�ixi;t ; (1)

St = bSt + �t ; (2)

where bSt is the model estimate of gas demand for day t, xi;t represents input features such
as temperature, prior day temperature, wind speed, day of week, and so on, with � being the
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(a)

(b)

Figure 1: An extreme cold event in natural gas consumption data for a certain region in the
USA. The extreme event identified can be seen to exhibit a hysteresis effect as a result of
unusual (human behavioral) response to extreme temperatures. The plot in (b) is an enlarged
version of (a) with focus on the extreme event.
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model parameters. Let �t be the forecast error for day t. Then the actual flow St is related
to the estimated flow bSt by Equation 2. The MLR component assumes a linear relationship
between the dependent and independent variables, while the ANN model accounts for non-
linear responses to the input features. The ANN model uses the same input features as the
MLR model. The ensemble model was trained on historical data obtained from gas utilities
in the USA. The learned model was used to estimate daily gas demand.

1.3 Base Model Performance

The base model described in Section 1.2 often over-forecasts and under-forecasts gas
demand for days before and after the coldest day in an extreme cold event, respectively.
Figure 2a shows an extreme cold event. If t is the index of the coldest day in the extreme
cold event, on days t, t� 1, and t� 2, the dashed line (base model estimate) is above
the straight line (actual consumption), which means the demand forecast is more than the
actual consumption for days before the coldest day. For days t+ 1 and t+ 2, the dashed
line is below the straight line, which means that the gas demand forecast is less than the
actual consumption for days after the coldest day. This pattern of demand forecast and
unusual response during extreme cold events has been observed for more than 20 operating
areas (from different geographical locations), especially for those areas that have experience
severe weather conditions in the past 10 years.

1.4 Quantifying Deviation

The work presented in this paper offers a strategy for adjusting the current base model
estimate during extreme cold events to improve the accuracy of the gas demand forecast. Our
strategy involves quantifying the deviation of the base model (which is a result of unmodeled
behavioral components) from the actual demand during extreme events. A computational
model is built based on the statistics of this deviation to estimate the forecast residual on
extreme cold events. This is employed to estimate an adjustment to the base model.

To build a computational model that estimates forecast residual on extreme cold events,
the extreme events are identified in the data. In Section 1.1, we postulated that extreme cold
events have different dynamics than usual days due to the unusual behavioral response. In
identifying extreme cold events, we search for events in the data with similar dynamics to
a known extreme event. The events are treated as temporal patterns.

We identify temporal patterns in natural gas data that correspond to extreme cold events.
This is achieved by clustering the data based on dynamics. Natural gas demand is a high
dimensional system, so that events with similar dynamics may not occupy the same cluster
in the input data space. For effective clustering, a low-dimensional embedding of the data
is performed using phase space reconstruction (Povinelli et al. (2006)). In the reconstructed
phase space, events with similar dynamics are closer to each other, while those with different
dynamics are far apart. Extreme cold events are identified by finding the events that are close
to a known extreme cold event in the reconstructed phase space, using a nearest neighbor
algorithm.

1.5 Paper Overview

In the next section, we discuss important concepts on which the work presented in this paper
is based, such as modeling non-stationary time series and phase space reconstruction for
pattern recognition. In Section 3, we describe our approach to identifying temporal patterns
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(a)

(b)

Figure 2: Performance of the base model on extreme cold events. For the extreme event
shown, the base model (identified by the dashed line) over-forecasts gas demand for days
before the coldest day t and under-forecasts for days after t. The plot in (b) is an enlarged
version of (a) with focus on the extreme event.
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of extreme cold events in natural gas time series data. Pseudocode also is presented. In
Section 4, we discuss the performance of our approach and present results obtained when
the algorithm was evaluated on six gas demand data sets from different gas utilities. As
future work, we provide a brief overview on how the result of the identification is being
used to estimate adjustments to gas forecast on extreme cold days.

2 Forecasting Non-stationary Data

In a non-stationary time series, the statistical properties of the underlying system vary over
different regions of the data space. A common technique for forecasting such time series
data involves building multiple models, with each model optimized for different regions of
the data. The data space is partitioned into regions of similar dynamics using some clustering
algorithm, and local models are learned for each identified cluster. The multiple local model
approach often achieves higher forecasting accuracy than a single global model (Vilalta et
al. (2010)). Global models are only well suited to stationary data, as they attempt to find an
approximate representation of a system’s dynamics (Pavlidis et al. (2006); Cao (2003)).

In financial forecasting, where exchange rates are highly correlated with economic,
political, and psychological factors, all interacting in a highly complex manner, Pavlidis et
al. (2006) employed clustering algorithms to partition the input data space into subspaces.
Each subspace was learned using Feed-Forward Neural Networks (FFNN). Given test data,
it was first determined to which cluster the data point belongs, and the corresponding FFNN
was used to predict the exchange rate. Results reported show that the approach compares
well with other established approaches. Cao (2003) employed a mixture of support vector
machine (SVM) experts, with each expert optimized to forecast different regions of the
input space. A self-organizing feature map was developed to cluster the input data space into
several disjointed regions. With the partitioned regions having a more uniform distribution
than the original input space, it becomes easier for the SVM experts to capture a stationary
input-output relationship. The SVM expert that best fits a partitioned region is trained by
finding the most appropriate kernel function and optimal free parameters of the SVM. Using
three openly available data as test cases, Cao showed that for all the test cases, the mixture
of SVM experts model achieves better performance than a single SVM model Cao (2003).

2.1 Clustering

The performance of the multiple model approach depends on the effectiveness of the
clustering step. Clustering algorithms are used in data mining and pattern recognition tasks
where items are to be separated into groups. Items in the same group are considered similar,
with similarity defined only in the sense of the particular application. Metrics used in
determining similarity include distance (i.e., how close the points are), density (i.e, how
compact points are), and connectivity. When using a distance function as a similarity metric,
it is possible for similar points to be far apart in the input data space, especially when
dealing with high dimensional data. In high dimensional spaces, distances between points
are relatively uniform, so the concept of closeness is meaningless (Steinbach et al. (2004)).
In clustering such high-dimensional data, it is customary to perform a low-dimensional
embedding, mapping the input data space into a new space where closeness is properly
defined.
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2.2 Phase Space Embedding

One common technique employed in low-dimensional embedding of high dimensional
data is called phase space reconstruction. Phase space reconstruction is based on Takens’
(1981) time-delay embedding theorem. Takens’ theorem gives the condition under which a
dynamical system can be reconstructed from a sequence of observations of the state of the
system. Sauer et al. (1991) showed that for almost every time delay embedding with the
appropriate selection of embedding parameters (dimension and time-lag), the reconstructed
dynamics, with a probability of 1, are topologically identical to the true dynamics of the
underlying system. Hence, the underlying dynamics of a system can be captured fully in a
reconstructed phase space (RPS).

This technique is able to reconstruct the underlying dynamics of any complex system
and map it into a new lower dimensional space. Since the RPS is equivalent to the true
dynamics of the system, points with similar dynamics are guaranteed to be close in this
space, while less similar points are far apart (Povinelli et al. (2004); Robinson (2005)).

2.3 Temporal Pattern Identification Using RPS

The RPS-based approach was demonstrated by Povinelli et al. (2006) to classify heart
arrhythmia into one of four rhythms. An electrocardiogram signal was reconstructed in a
phase space. The reconstructed phase was learned using a Gaussian Mixture Model (GMM)
and classified using a Bayesian classifier. Povinelli et al. (2006) showed that the RPS-based
approach outperformed other frequency-based methods with an accuracy of up to 95%,
compared to the 44% accuracy of the frequency-based method.

While most of the existing applications of the RPS approach deal with univariate time
series where the temporal pattern to be identified appears in the same feature space, the RPS
approach can be extended to multivariate time series. Zhang and Feng (2012) in detecting
sludge bulking, a primary cause of failure in water treatment plants, used an RPS-based
approach to identify multivariate temporal patterns characteristics of sludge bulking in
sludge volume index (SVI) and dissolved oxygen (DO) time series. The SVI and DO time
series data are embedded in a multivariate RPS. The embedding dimension and time-lag
for each signal was estimated using global false nearest-neighbors and first minimum auto-
mutual information (Abarbanel (2012)). A mixture of Gaussian models is used to cluster
the multivariate reconstructed phase space into three distinct classes. The result of the RPS-
GMM approach was compared to other methods and was shown to perform better than both
ANN and Time Series Data Mining (Povinelli et al. (2001)) approaches by at least 28%.

3 Identifying Extreme Cold Events

The techniques employed in identifying extreme events are similar to those described
in Sections 2.1 through 2.3. This section discusses how the phase space reconstruction
technique is applied to identify temporal patterns that correspond to extreme cold events in
natural gas data.

Let an event be described as the dynamics between temperature and the corresponding
natural gas demand over a series of five days. An event is classified as an extreme cold event
if the pattern associated with the unusual behavioral response described in Section 1.1 is
detected. The natural gas dataset is a multivariate time series consisting of two separate time
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series; daily gas demand and daily temperature time series data. Let St represent natural
gas consumption for day t and HDDWt be derived from the corresponding (wind-adjusted)
temperature. An extreme cold event is a multivariate temporal pattern, defined as

p = fS1; S2; :::; Sq; HDDW1;HDDW2; : : : ;HDDWqg ; (3)

with p 2 P � <2q , q is the length of the temporal pattern. P represents the pattern cluster.
Given a multivariate time series X = fS(t); HDDW(t)g; t = 1; 2; :::; n, it is desired to
identify all p 2 P .

To identify all p 2 P , X is embedded in a multivariate reconstructed phase space in
a way similar to Zhang and Feng (2012). Pattern cluster P is identified using a nearest
neighbor algorithm in the reconstructed phase space.

3.1 Data Preprocessing

The datasets used in this work were obtained from natural gas utilities across the USA. This
data has been anonymized to protect the identity of the utilities. Each dataset comprises
ten years of actual gas consumption and weather data. The data is normalized prior to
constructing a multivariate embedding. This ensures that St and HDDWt are weighted
equally in the reconstructed phase space such that the range of both S and HDDW is [0; 1].

St =
max(S)� St

max(S)
; (4)

HDDWt =
max(HDDW)�HDDWt

max(HDDW)
: (5)

3.2 Multivariate Phase Space Embedding

The second step involves multivariate phase space embedding of the normalized time series
data. According to Sauer et al. (1991), the appropriate selection of embedding parameters
is necessary to ensure the reconstructed space is topologically equivalent to the original
system. Takens’ (1981) original work argued that choosing embedding dimensionQ greater
than 2m+ 1, wherem is the dimension of the system’s original state space, the time series
can be completely unfolded in a phase space. Povinelli and Feng (1998), Abarbanel (2012)
showed that useful information still can be extracted from the phase space by choosing a
smaller Q. In most common applications (Povinelli and Feng (2003); Zimmerman et al.
(2003); Povinelli et al. (2004, 2006); Zhang and Feng (2012)), time-lag � is estimated using
the first minimum auto-mutual information, while dimensionQ is estimated using the global
false nearest-neighbor technique. In Povinelli and Feng (2003), embedding parameters were
selected based on the of length of the temporal pattern vector to be identified.

Our selection of embedding parameters is application-specific. The dimensionQ of the
RPS and the time-lag � at which to sample the signal are selected based on our domain
knowledge. The selection of � and q is based on the length of the temporal pattern vector
to be identified. We are interested in bitter cold events about five days long, so the inter-
relationship between flow S and wind-adjusted temperature HDDW for five consecutive
days interests us. Multivariate embedding is done by augmenting individual univariate RPS.
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Flow time series S(t) is embedded in a univariate RPS with time-lag � = 1, and
dimension Q = q = 5. S maps into <q . The resulting phase space matrix

s =

2666666664

S1 S2 S3 S4 S5

S2 S3 S4 S5 S6

...
...

...
...

...
Si Si+� : : : Si+�(q−1)

...
...

...
...

...
Sn−�(q−1) : : : Sn

3777777775
:

HDDW(t) is embedded in a univariate RPS with � = 1 andQ = q = 5 in a way similar
to S(t). The resulting phase space matrix

hddw =

2666666664

HDDW1 HDDW2 HDDW3 HDDW4 HDDW5

HDDW2 HDDW3 HDDW4 HDDW5 HDDW6

...
...

...
...

...
HDDWi HDDWi+� : : : HDDWi+�(q−1)

...
...

...
...

...
HDDWn−�(q−1) : : : HDDWn

3777777775
:

The univariate phase space matrices s and hddw have equal sizes. A multivariate RPS is
formed by augmenting s and hddw such that the resulting multivariate phase space matrix
is 2666666664

S1 S2 : : : S5 HDDW1 HDDW2 : : : HDDW5

S2 S3 : : : S6 HDDW2 HDDW3 : : : HDDW6

...
...

...
...

...
...

...
...

...
...

Si : : : Si+�(q−1) HDDWi : : : HDDWi+�(q−1)

...
...

...
...

...
...

...
...

...
...

Sn−�(q−1) : : : Sn HDDWn−�(q−1) : : : HDDWn

3777777775
The overall embedding dimension Q is the sum of the embedding dimensions of both

variables, i.e.,Q =
P2
i=1 q = 10. Each row of the RPS matrix is a point in 10-dimensional

space representing the dynamics of flow and temperature for five consecutive days.
Figure 3 shows a 3-dimensional projection of the 10-dimensional reconstructed phase

space. Only three (namely S(t� 2);HDDW(t� 2), and HDDW(t� 3)) of the 10 axes are
shown for visualization purposes. Figure 3 also shows an event instance e in the time series
and its corresponding mapping in the RPS. The event e shown in the time series plot has
been reduced to a point in 10-dimensional space.

3.3 Nearest Neighbor Classifier

We desire to find the pattern cluster P that corresponds to extreme cold events. This is
achieved by classifying events into one of two classes: normal and extreme cold events.
Classification is done in the reconstructed phase space obtained in Section 3.2 using a
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Figure 3: Reconstructed phase space built from natural gas consumption data. The
overlayed plot (flow vs. temperature) is an event instance e. In the reconstructed phase
space, the event instance e is represented by the circular marker. The reconstructed
phase space is a 10-dimensional phase space with axes S(t); S(t� 1); : : : ; S(t� 4) and
HDDW(t);HDDW(t� 1); : : : ;HDDW(t� 4). The RPS plot shows only 3 of the 10 axes.
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nearest neighbor (NN) algorithm. This is possible because closeness can be defined in this
new feature space.

Nearest neighbor is a nonparametric classification method based on the measurement of
a point’s similarity to a training set containing patterns for which class labels are supplied.
A nearest neighbor classifier is an instance-based learning algorithm, i.e., it does not build
a model through learning, but rather aggregates the values provided by the training patterns
in the vicinity of the current point. A k-Nearest Neighbor (k-NN) classifier assigns a label
to a point x in the feature space based on the class assignment of its k-nearest neighbors.
Decision is based on majority voting. This k-NN algorithm is supervised, requiring all
training samples to have an assigned label. For an unsupervised task with unlabeled data,
the k-NN algorithm no longer works. Identifying extreme events is an unsupervised task
since there are no labeled datasets. To tackle the challenge of unlabeled data set, Povinelli
et al. (2001) assigned class label to the training set by defining an event characterization
function. In Liu et al. (2013), Liu used a semi-supervised k-NN employing instance ranking
to deal with unlabeled data. To overcome the challenge of unlabeled data, we transform our
unsupervised task into a semi-supervised one by assigning a class label to one of the data
points. This point will be referred to as the pivot. The k-NN algorithm is modified to find
the k nearest neighbors to the pivot point (inclusive). The k nearest neighbors discovered
by this k-NN algorithm are assigned the same class label as the pivot. A known extreme
cold event is chosen as the pivot, and the algorithm finds the k closest events to the extreme
cold event. Closeness of a point (to the pivot) is determined by computing its Euclidean
distance d(pivot; event) from the pivot. The smaller the Euclidean distance, the higher the
likelihood of the event being an extreme cold event and vice versa.

With the modified k-NN classifier described above, choosing the coldest event in the
dataset as the pivot, the k-NN algorithm returns k events that have the same dynamics as the
observed coldest event. The coldest event is found by manually searching the reconstructed
phase space for the event with the max HDDWj+ q−1

2
(i.e., lowest third day temperature

for five-day events) and assigning it a class label: extreme event. Since the identification is
done in the reconstructed phase space, the identified extreme events are mapped back to the
original time series.

Figure 4 shows the flow and HDDW time series with extreme events identified by the
k-nearest neighbor classifier. In Figure 4, k has been chosen as three for the purpose of
presentation. Typical value of k might be about two events per year of available data. The
event identified by the circular marker is the pivot (coldest) event. The box and ‘X’ markers
represent the other extreme events identified by the algorithm having a similar ‘unusual
response’ to the pivot event.

3.4 Algorithms

The pseudocode of the RPS-kNN approach described in Sections 3.1 through 3.3 is provided
in Algorithm 1. The identifyExtremeColdEvents function builds a multivariate RPS by
merging two univariate RPS and calls the classifyWithKNN function to identify the extreme
cold events. The formUnivariateRPS function builds individual RPS using the selected
time lag � and dimension q:
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(a)

(b)

Figure 4: Three extreme cold events that have been identified using our RPS-kNN approach.
The rightmost (coldest) event is chosen as the pivot. The two other events have been
identified as the nearest neighbors to the coldest event in the reconstructed phase space.
The plot in (b) is an enlarged version of (a) with focus on the extreme events.
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Algorithm 1 Reconstructed Phase Space - k Nearest Neighbor (RPS-kNN)
1: function identifyExtremeColdEvents(multivariateTimeseries, k)
2: flow extract flow from multivariateTimeseries . Preprocessing
3: HDDW extract wind-adjusted temperature from multivariateTimeseries
4: normalizedFlow normalize flow
5: normalizedHDDW normalize HDDW

6: choose timelag � and dimension q based on domain knowledge . RPS
7: rpsFlow formUnivariateRPS(normalizedFlow, � , q)
8: rpsHDDW formUnivariateRPS(normalizedHDDW, � , q)
9: rps merge rpsFlow and rpsHDDW to form a multivariate rps

10: return extremeColdEvents classifyWithKNN(rps, k) . Classification
11: end function

12: function formUnivariateRPS(data, � , q)
13: reconstructedPhaseSpace form a reconstructed phase space of data using the given

� and q
14: return reconstructedPhaseSpace
15: end function

16: function classifyWithKNN(rps, k)
17: xi  find coldest event and choose as pivot
18: for each event xj in rps do:
19: d(i; j) compute the Euclidean distance
20: end for
21: d sort(d, asc)
22: indexes return the indexes of the first k elements
23: return extremeColdEvents re-map indexes in the phase space to time series
24: end function
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4 Discussion

The RPS-kNN algorithm described in Algorithm 1 was tested on several datasets from
different LDCs. Each dataset contains ten years of actual natural gas consumption data with
the corresponding weather information. For each dataset, a multivariate reconstructed phase
space is formed, and the coldest event in each dataset is chosen as the pivot. With the pivot
chosen and k fixed, the k-nearest neighbor classifier returns the k most similar events to
the coldest event. These events are considered to be the extreme cold events in the dataset.
Figure 5 shows the events identified by the RPS-kNN algorithm for six datasets. Only three
of the identified events are shown, for the sake of presentation.

The performance of the classification stage will be determined by the contribution of
the identified events to improving the estimate of gas forecast during extreme cold events.

4.1 Defining Bias

The effectiveness of the RPS-kNN technique depends on the chosen value of k. As
mentioned in Section 3.3, as k increases, the likelihood of event xk having similar dynamics
to the pivot (coldest extreme event) decreases. The k-nearest neighbor classifier identified
k events that are closest to an observed cold event. If actual similar events are fewer than
k, the classifier identifies k events regardless of how similar they actually are to the pivot
event. Hence, the chosen value of k must be optimal.

In Section 1.4, we stated that part of the motivation for identifying extreme cold
events is to build a computation model that estimates adjustment to gas demand forecast.
The effectiveness of the computational model in estimating residual values depends on
performance of our clustering. Because of this interdependence, we optimizek in the context
of the residual analysis, i.e., we chose k such that identified events improve the estimate
of gas demand during extreme cold events using an approach similar to Tongal (2014).
Although the residual analysis is beyond the scope of this paper, we discuss briefly how
this is achieved in Section 4.2.

4.2 Optimizing k

Careful evaluation of the effectiveness of our identification of extreme cold events depends
on the contribution of the identified events in improving the base model’s estimate. In
estimating adjustment to the base model (described in Section 1.2) during extreme cold
events, temporal patterns in the dataset that are characteristics of extreme cold events are
identified using the RPS-kNN algorithm described in Algorithm 1. A residual learning
model (shown in Figure 6) is built on the identified events. The residual model is a Partial
Least Square (PLS) model trained to estimate base model’s residuals br for days in an extreme
cold event. For the PLS model, points in the 10-dimensional reconstructed phase space were
taken as predictor variables, with the base model’s forecast residuals r = S � bS being the
response variable. The estimated residuals br were added as adjustment to the base models’

flow estimate bS to form a new estimate bbS of gas demand i.e., bbS = bS + br.
The performance of the adjustment model is dependent on the value of k which is the

number of identified extreme events. In determining the optimum value of k to be used
in the RPS-kNN procedure, the value of k, is varied from 5 to an arbitrarily large value
(less than n), and the corresponding Mean Absolute Percentage Error (MAPE) is evaluated
on the validation data similar to Tongal (2014). We desire to find the k that minimizes




