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ARTICLE INFO ABSTRACT

Keywords: ' This paper introduces a probabilistic approach to anomaly detection, specifically in natural
EDsziglea“'“g gas time series data. In the natural gas field, there are various types of anomalies, each
y

of which is induced by a range of causes and sources. The causes of a set of anomalies
are examined and categorized, and a Bayesian maximum likelihood classifier learns the
temporal structures of known anomalies. Given previously unseen time series data, the
system detects anomalies using a linear regression model with weather inputs, after which
the anomalies are tested for false positives and classified using a Bayesian classifier. The
method can also identify anomalies of an unknown origin. Thus, the likelihood of a data
point being anomalous is given for anomalies of both known and unknown origins. This
probabilistic anomaly detection method is tested on a reported natural gas consumption
data set.
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1. Introduction This paper proposes a two-stage method for the de-

tection of anomalies. In the first stage, the probability of

Anomaly detection, which is the first step of the data
cleaning process, improves the accuracy of forecasting
models. Data sets are cleaned for the purpose of being used
to train forecasting models. Training a forecasting model
on time series that contain anomalous data usually results
in an erroneous model, because the parameters and vari-
ance of the model are affected (Chang, Tiao, & Chen, 1988).
There are various anomalies in historical natural gas time
series, due to factors such as human reporting error, data
processing error, failure of a natural gas delivery subsys-
tem due to extreme weather, or faulty meter measure-
ments. Examining natural gas time series manually for all
causes of anomalies is a tedious task, and one that is infea-
sible for large data sets. Thus, there is a need for automated
and accurate algorithms for anomaly detection.
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a data point being anomalous is determined, using a lin-
ear regression model derived from natural gas domain
knowledge and a geometric probability distribution of the
residuals. The second stage consists of training a Bayesian
maximum likelihood classifier based on the types of
anomalies identified at the first stage. For a test set, the
classifier calculates the maximum likelihood of the data
points given the prior classes, and uses the likelihood val-
ues to distinguish between false positives and true anoma-
lies. If a data point is anomalous, the classifier is able to
report the type of the anomaly. The contribution of the
proposed method is its ability to incorporate domain
knowledge in the techniques developed for the efficient
detection of anomalies in natural gas time series.

Previous work in anomaly detection using probabilistic
and statistical methods is discussed in Section 2. Section 3
presents the types of anomalous data encountered in the
natural gas domain. A detailed description of our method
is presented in Section 4. The experiments and results are
presented and analyzed in Section 5.
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2. Previous work

Anomalous data are data that we do not have (missing
data), that we had and then lost (manual reporting error,
bad query), or that deviate from the system expectations
(natural gas consumption during outages due to extreme
weather) (McCallum, 2012). Markou and Singh (2003)
presented a survey of anomaly detection techniques,
ranging from graphical methods such as box plots to more
complex techniques such as neural networks. Statistical
approaches to anomaly detection are based on the idea
of modeling data using different distributions and looking
at how probable it is that the data under test belong to
these distributions. The method presented in this paper
combines linear regressions and distribution functions for
the detection of anomalies in natural gas time series,
then uses Gaussian mixture models (GMM) for modeling
training subsets that contain anomalous features (Barber,
2012). The likelihood of a test data point belonging to a
prior subset is calculated using the GMM distributions, and
the data point is classified.

Regression analysis is a statistical method that is used
widely for electricity and natural gas demand forecasting
(Aras & Aras, 2004; Hong, 2014; Hong, Wilson, & Xie, 2014;
Hyndman & Fan, 2010; Lyness, 1984; Nedellec, Cugliari, &
Goude, 2014). It has also been used in combination with a
penalty function for outlier detection (Zou, Tseng, & Wang,
2014). The disadvantage of using a penalty function is that
the design of the tuning parameters has to be precise,
and is often quite subjective. Therefore, penalty function
strategies do not always guarantee practical results. The
advantage of linear regression is that, with the dependent
variables being well defined, the technique is able to
extract time series features (Magld, 2012). Lee and Fung
(1997) showed that linear and nonlinear regressions can
also be used for outlier detection, but they used a 5% upper
and lower threshold limit for choosing outliers after fitting,
which yielded many false positives for very large data sets.
Linear regression has also been combined with clustering
techniques for the detection of outliers (Adnan, Setan, &
Mohamad, 2003). In this paper, linear regression is used
for extracting weather features from the time series data
and computing the residuals of the data.

Bouguessa (2012) proposed a probabilistic approach
that uses the scores from existing outlier detection algo-
rithms to discriminate automatically between outliers and
the remaining points in the data set. Statistical approaches
such as the GMM (Yamanishi, Takeuchi, & Williams, 2000),
distance-based approaches such as k-nearest neighbors
(Ramaswamy, Rastogi, & Shim, 2000), and density-based
approaches such as the Local Outlier Factor (LOF; see Bre-
unig, Kriegel, Ng, & Sander, 2000) are existing techniques
that Bouguessa (2012) used for his ensemble model. Each
technique provides a score for each observation, and the
results are combined to decide whether the observation is
an outlier or not. Yuen and Mu (2012) proposed a method
that calculates the probability of a data point being an out-
lier by taking into account not only the optimal values of
the parameters obtained by linear regression, but also the
prediction error variance uncertainties.

Gaussian mixture model approaches have also been
used for outlier detection and classification. Tarassenko,

Hayton, Cerneaz, and Brady (1995) studied the detection
of masses in mammograms using Parzen windows and
GMMs. The authors showed that GMMs do not work well
when the number of training samples is very small, and
that using Parzen windows yielded false positives. Gaus-
sian mixture models were also used by Tax and Duin (1998)
to reject outliers based on the data density distribution.
They showed that the challenge when using GMMs is se-
lecting the correct number of kernels. However, the ap-
proach developed by Povinelli, Johnson, Lindgren, Roberts,
and Ye (2006) demonstrated that transforming the signal
from a time domain into a phase space improves the GMM
classifier. The approach also works well for small training
samples and for multivariate data. Gaussian mixture mod-
els are a common descriptor of data, but the outliers need
to be well defined. This is why standard methods such as
linear regression and statistical hypothesis testing are used
first for detecting the anomalies in a time series.

3. Natural gas time series anomalies

Understanding the sources of anomalies in natural gas
time series data is important for their detection and clas-
sification, because the definition of false positives depends
on the context. The time series data in this paper are the re-
ported natural gas consumption levels for residential and
commercial (offices, schools, administrative buildings, and
hospitals) customers. For these categories of customers,
the possible sources of anomalous data include:

e Missing data or missing components of aggregated
data occur when there are no data values for a specific
observation in a univariate data set or when there are
no data values for a particular variable of a multivariate
data set.

o Electric power generation occurs when the natural
gas load used for the generation of electric power is
included in the residential or commercial customers’
consumption load.

e Main breaks are unplanned events that interfere with
the normal consumption of natural gas, such as a
backhoe hitting a pipeline or heavy snow days.

o Naive disaggregation or a stuck meter occurs when a
normally variable natural gas load does not vary across
several meter reporting periods.

e Negative natural gas consumption is typically the
result of a system misconfiguration. A natural gas
consumption can be zero but not negative. A negative
consumption can be reported because different pieces
of the system (pipelines, types of customers, or
corrections) have been merged together mistakenly.

e Human error yields unexpected data values as a result
of a bad query or incorrect manual entry reporting.

e Mismatched meter factors or mismatched units of
aggregated data occur when the meter factor is
switched during data collection (usually, the natural gas
load for an operating area is composed of loads from
various territories) without applying the adjustment
factor to previous data (for example decatherms to
therms). It also occurs when the units of subsets of
the data are different, and the proper conversion is not
applied when merging the data.
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Fig. 1. The relationship between natural gas consumption and temper-
ature for operating area 1. The red function captures the trend lines of
the linear regression model for operating area 1, given by y;, = By +
B1HDDss + B,HDDgs + 83CDDgs. (For the interpretation of the references
to colour in this figure legend, the reader is referred to the web version of
this article.)

e Outliers are data points that are dissimilar to the re-
maining points in the data set (Hawkins, 1980). If there
is no correlation between natural gas consumption and
the factors driving the consumption, and the cause is
not identifiable, the data point is simply considered an
outlier. In this paper, outliers refer to anomalies that do
not fit into any of the cases defined above.

These causes of anomalies are used to divide a training
set into subsets. Each subset contains a specific type
of anomalous feature, and is used to train a Bayesian
maximum likelihood classifier.

4. Anomaly detection method

This section presents the natural gas time series
anomaly detection algorithm and the Bayesian maximum
likelihood classifier developed for anomaly detection. Be-
cause the consumption of natural gas by residential and
commercial customers is influenced by the weather, a lin-
ear regression model is used to extract weather features
from the time series data. The residuals of the time series
data form a data set that can be studied using distribution
functions.

4.1. Linear regression

Any natural gas time series can be divided into three
parts: a base load that does not depend on the temperature,
but is related to everyday usages of natural gas, such as
cooking, water heating, and drying clothes; and heating
and cooling loads that vary with the temperature (Vitullo,
Brown, Corliss, & Marx, 2009).

Fig. 1 shows an example of the relationship between
natural gas consumption and temperature for operating
area 1. The explanatory variables for the linear regression
model are weather-related inputs.

The general linear regression model that is used to
extract features and calculate residuals on the natural gas
time series data sets in this paper is

Y¢ = Bo+ B1HDDWr, .+ f AHDDW
+ B3CDDy,,, . + Bayi1, (1)

where T, and Ty, are the reference temperatures below
or above which heating or cooling is needed, respectively
(Beccali, Cellura, Brano, & Marvuglia, 2008). The reference
temperatures usually vary by climatic regions. HDDWT,efH
and CDDT”,fc are the daily wind-adjusted heating degree
days and cooling degree days, calculated at reference
temperatures Ty, and Ty, respectively. AHDDW is the
difference in heating degree days between two consecutive
days, and captures the temperature variation from one day
to the next. If T is an average daily temperature,

HDDWTrefH = max(0, Tr,, — T) x (wind factor),
and CDDTrefC = max(0, T — Trey,).

After the coefficients of the linear regression have been
calculated, they are used to compute the residuals of the
data by taking the difference between the actual and
estimated values. The natural gas time series anomaly
detection algorithm is applied to the residuals to find any
anomalies.

4.2. Natural gas time series anomaly detection

The linear regression model only extracts the weather
dependency of the time series. Therefore, the residuals
form a data set that can be modeled using probability
distribution functions. The extrema (maximum and mini-
mum) of the set of residuals are used to find anomalies. An
extremum is an anomaly if its probability of belonging to
the same distribution as the remaining points in the resid-
ual data set is less than the probability of committing a type
[ error at a specified level of significance, typically 1% (Ak-
ouemo & Povinelli, 2014).

The data need to be imputed at each iteration of the
anomaly detection process to reduce masking (Grané &
Veiga, 2010). The estimated coefficients may be erroneous
at the beginning of the process because it is uncertain
whether the data set contains anomalies. After an anomaly
has been identified, the linear regression model coeffi-
cients are re-calculated on cleaner data at each iteration of
the algorithm. The algorithm stops when no more anoma-
lies are identified. The MATLAB-like pseudo-code of the
natural gas time series anomaly detection algorithm is pre-
sented in Algorithm 1.

The replacement values in this paper are calculated
using the same linear regression model as is used for
anomaly detection. However, the model only provides
a naive imputation of the anomalous data because it
does not include the trends or seasonality components of
the natural gas time series. The replacement values are
sufficient for anomaly detection purposes, but complex
forecasting models are more suitable for data imputation
because they include the domain knowledge that is
necessary for modeling the particularities of natural gas
data sets or utility systems.
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Algorithm 1 NATURAL-GAS-TS-ANOMALY-DETECTION

Require : natural gas time series Y, temperature, wind, &, Tref,,, Trer» assumed distribution Dist(X, B)

potentialAnomalies < true
anomalies <

% Calculate the non-varying inputs to the anomaly detection linear regression model

weatherLRInputs < [1 HDDWr,.  AHDDW CDDy,,, ]

while (potentialAnomalies) do

% Include the first lag of Y as input and calculate the model coefficients

LRInputs <— [weatherLRInputs Y_]
B < Y /LRInputs

% Use the coefficients to calculate estimated values and residuals

Y < B x LRInputs
residuals <~ Y —Y

% Select the minimum and maximum values of the residuals as potential anomalies

maxResiduals <— max(Residuals)
minResiduals <— min(Residuals)

% Calculate the probability that each potential anomaly belongs to the underlying distribution

% of the remaining data points

Dmax < Probability(maxResiduals ~ Dist({residuals} \ {maxResiduals}))
DPmin < Probability(minResiduals ~ Dist({residuals} \ {minResiduals}))

% Determine if the extrema are anomalous based on the level of significance «

Zmin < 1 — (1 — ppmin)"
max < 1 — (1 = prmax)"
if (gmax > Ol) Vv (gmin > (X) then

% Exit condition for the algorithm, because there are no more anomalies

potentialAnomalies < false
else

% Test whether the minimum or the maximum is the anomaly

if DPmax < Dmin then

anomalies <— {anomalies, maxResiduals}
else

anomalies <— {anomalies, minResiduals}
end if

% Re-impute all anomalies found and keep iterating
Re-forecast(anomalies)
Re-impute anomalies in signal Y
end if
end while
return anomalies, Y

After the anomalies have been detected, they are
divided into subsets according to the types of anomalies,
as defined in Section 3. Each type of anomaly constitutes
an anomalous feature, and each subset is used to train the
Bayesian maximum likelihood classifier.

4.3. Bayesian maximum likelihood classifier

A Bayesian maximum likelihood classifier is used to
learn the anomalous features found in a training set using
Algorithm 1. The features are used to test and classify un-
seen data points. A classifier is an algorithm which includes
features as inputs and produces both a label and confidence
values as outputs (Palaanen, 2004). The probability that a

feature vector x belongs to a class ¢; is p(c;|x); this is often
referred to as the a posteriori probability, which is derived
using the Bayes theorem. If x is a feature vector and ¢; is the
ith class, the probability p(c;|x) is

p(cilx) = PHDPE) 3)
p(x)

where p(x) is the unknown probability of the feature vari-
ables (x = {X1,...,%;,...,xy}), and does not depend on
the class c;. The prior of the ith class is p(c;). The prior is as-
sumed to be equiprobable across all classes (p(c;) = p(c)).

Because p(x) and p(c;) are constants, they can be treated
as scaling factors, and p(c;|x) becomes a non-normalized
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probability,
p(cilx) o px|ci). (4)

GMMs are used to model the density of the data
belonging to each class. A GMM is a parametric probability
distribution function that consists of a weighted sum of
Gaussian densities. If the number of Gaussian mixtures
chosen to represent a data set is M, the probability p(x|c;) is

M
ple) = [ [p&jle, (5)

i=1

where p(xj|c;) is the probability of the feature vectors in
the jth mixture assuming the ith class. The GMM param-
eters are estimated using expectation maximization (EM).
The estimation fits the distribution to the training features
(Reynolds, 2008). If the GMM is used for modeling the data,
the likelihood that a feature vector is from a label or class
c is

C; = argmax p(x|¢;)) = Z argmax p(x;[¢;). (6)
J

The likelihood of a data feature is calculated for every
class. The data feature belongs to the class that yields the
maximum likelihood. Because time series data are not the
outcomes of a random process, Bayesian techniques are
difficult to apply to time series data. Therefore, the data
are transformed from the time domain to a phase space in
order to extract the multidimensional features of the data
using a Reconstructed Phase Space (RPS) (Povinelli et al.,
2006). A RPS is a way of extracting the multidimensional
features of the data that are embedded in a time series
signal by studying the signal against delayed versions of
itself (Sauer, Yorke, & Casdagli, 1991). The RPS is formed as

Y = [V Yr—r - Yr—@-1)]
withk = (14 (d — 1)7) -- - N, 7)

where Y is the dimensional phase space vector of features,
yi is the kth d-dimensional time series vector feature,
T is the time lag, d is the phase space dimension, and
N is the number of features or observations in the time
series. For the experiment presented in this paper, y, =
(flowy, temperature,). A RPS is equivalent in a topological
sense to the original system (Sauer et al., 1991), and is
therefore an effective mechanism for representing the
data.

The classifier is trained on RPS training features instead
of time series features. Training a classifier is a supervised
learning process, because the data are assumed to come
from a specific class. The k-means technique can be used
for the efficient detection of the numbers of lags and
mixtures necessary for representing a data set. In practice,
it is also found that the Bayesian maximum likelihood
classifier trained on phase space features works well for as
few as two mixtures (Povinelli et al., 2006).

We can be certain that a data point is anomalous if both
the natural gas time series anomaly detection algorithm
and the Bayesian maximum likelihood classifier detect and
classify it as anomalous. The next section presents the
experiments, the results, and an analysis of the results.

5. Experiments and results

The natural gas time series anomaly detection algo-
rithm and the Bayesian maximum likelihood classifier are
tested on a natural gas data set. The data set represents the
daily reported natural gas consumption of operating area
2. The data set covers the period from 01 January 1996 to
31 August 2009, with a total of 4992 data points. The data
are scaled so as to maintain confidentiality, but the scaling
is done in such a manner that it preserves the time series
characteristics.

5.1. Anomaly detection results

For this data set, the HDDW are calculated at both
reference temperatures 55° F and 65° F, and the CDD are
calculated at both reference temperatures 65° F and 75° F.
Therefore, the linear regression model used for anomaly
detection is a seven-parameter model. AHDDW is the
difference between the mean HDDWs of two consecutive
days:

AHDDW = 0.5[HDDWs5 + HDDWgs |
— 0.5[(HDDWs5) _1 + (HDDWgs) _1]. (8)

Fig. 2 shows the results of Algorithm 1 for the natural
gas data set of operating area 2. It depicts four types of
natural gas anomalies: power generation (in the summer
of 2001), negative flow values, main break (extreme high
and low flow values in December 2006), and outliers (all
other types of anomalies that are not recognized by domain
knowledge). The data set is divided into a training set
from 01 January 1996 to 31 December 2008, and a test
set from 01 January 2009 to 31 August 2009, as depicted
in Fig. 3. The training set is divided further into three
subsets. The first subset, from 01 January 1996 to 30 June
2001, corresponds to the portion of the data set where
no anomalies were found. In the second subset, from
01 July 2001 to 15 October 2001, all anomalies are due
to power generation. The third subset, from 16 October
2001 to 31 December 2008, contains all other types of
anomalies. The classifier is trained on each subset. Because
no anomalies were found in the first subset, it is considered
to represent the class of “clean” data. The classifier is also
trained on the power generation anomalies set because
there are enough samples. The main break phenomena in
December 2006 cannot be trained as a class because of the
lack of training samples. Also, training on a class of only
negative flow values is impossible because it yields non-
positive semi-definite covariance matrices. Therefore, the
third subset, representing the “outlier” class, contains all
of the other types of anomalies that have not been trained
yet. The classifier is trained with one time lag and two
Gaussian mixtures. Each data feature consists of the pair
(flow, temperature). These “clean”, “power generation”,
and “outlier” classes are used to test the last year of the
data set.

The anomaly detection results on the test set are
presented in Fig. 4. The maximum likelihoods of the
monthly subsets of the data are calculated, and the results
are presented in Table 1. Table 2 presents the maximum
likelihoods of the anomalies found using the natural gas
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Fig. 2. Anomaly detection result for the natural gas time series of operating area 2. The red dots represent the anomalies identified by the natural gas time
series anomaly detection algorithm. (For the interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
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Fig. 3. Anomaly detection results for the natural gas time series of operating area 2, depicting the set used to train the Bayesian classifier and the test set.
(For the interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1

Bayesian maximum likelihood classifier results on monthly subsets.
Months Estimated classes Actual

Clean  Outlier = Power generation

January 2009 1 0 0 Clean
February 2009 1 0 0 Clean
March 2009 1 0 0 Outlier
April 2009 0 1 0 Outlier
May 2009 0 1 0 Outlier
June 2009 0 1 0 Outlier
July 2009 0 1 0 Outlier
August 2009 0 1 0 Outlier

anomaly detection algorithm, labeled B to M. In addition,
the maximum value of the time series data set, labeled A,
is also classified. The point A is tested to show that the
extremum of the time series data set is not necessarily
an anomaly. Confusion matrices of the Bayesian maximum
likelihood classifier results are also built and presented in
Tables 3 and 4. The maximum likelihoods measure how

confident we are that a particular point is anomalous.
Because the maximum likelihood is not a normalized
probability, the output of the algorithm is a Boolean
variable (0 or 1).

Table 1 agrees with the data set of Fig. 4, with the
exception of March 2009. In Table 1, January and February
2009 are clean data sets, while the data set from April
to August 2009 contains some anomalous negative flow
values. March 2009 is labeled “clean”, but its actual label
according to Algorithm 1 was “outlier”. The classifier
accuracy calculated on monthly subsets is 87.5%, as is
shown in the confusion matrix of Table 3.

Table 2 presents the anomalies identified and the
maximum value of the test set that is tested for being a
false positive, along with the values of the data points,
their probabilities of being anomalous, and the Bayesian
maximum likelihood classifier results. According to the
output of Algorithm 1, points B to M are anomalous data
points, and A is a clean data point. The classifier labels A
and B as clean data points, and C to M as anomalous data
points. The label output of B is in agreement with March
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Table 2
Anomaly detection results for the test set of operating area 2.

Points Flow values Probability Actual label Estimated classes
Clean Outlier Power generation
A(25]an.) 509.74 1.0 Clean 1 0 0
B (22 Mar.) 449.26 1.1x 1073 Outlier 1 0 0
C(01Apr.) —13.50 47 x 1071 Outlier 0 1 0
D (07 Apr.) —5.43 1.4 x 107 Outlier 0 1 0
E (15 May) —2.93 6.3 x 1073 Outlier 0 1 0
F (27 May) —7.39 32x 1073 Outlier 0 1 0
G (31 May) —1.75 94 x 1073 Outlier 0 1 0
H (10 Jun.) —5.48 41x 1073 Outlier 0 1 0
1(23Jun.) —8.13 6.3 x 1074 Outlier 0 1 0
J(22]ul.) —636.56 3.4 x 107102 Outlier 0 1 0
K (09 Aug.) —8.29 1.2 x 107° Outlier 0 1 0
L(11Aug.) —3.24 82 x 1073 Outlier 0 1 0
M (14 Aug.) —3.52 8.3 x 1074 Outlier 0 1 0
Table 3 Table 4

Confusion matrix of the Bayesian maximum likelihood results presented
in Table 1.

Confusion matrix of the Bayesian maximum likelihood results presented
in Table 2.

Actual Predicted Actual Predicted
Clean Outlier Power generation Clean Outlier Power generation
Clean 2 0 0 Clean 1 0 0
Outlier 1 5 0 Outlier 1 11 0
Power generation 0 0 0 Power generation 0 0 0

2009 being labeled a clean data set. Point A, while being
the maximum value of the data set, is not classified as
an anomaly. The probabilities are calculated at different
iterations of the anomaly detection process. The actual
labels are derived from a comparison of the probabilities
of the data points, and the level of significance is chosen to
be 0.01.

The confusion matrix for individual test data points is
presented in Table 4, and the results yield an accuracy of
92.3%. Testing the Bayesian classifier on monthly subsets
yields a low accuracy compared to testing individual data
points because of the number of samples (eight monthly

samples as opposed to 13 data points). We can be certain
that a data point is anomalous if it is labeled anomalous
by both the natural gas time series anomaly detection
algorithm and the Bayesian maximum likelihood classifier.
We conclude that points C to M are anomalous, while
points A and B are not anomalous.

5.2. Evaluation of forecasting improvement

To evaluate the percentage improvement in the fore-
casting accuracy due to data cleaning, the original and
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Fig. 5. Clean natural gas time series for operating area 2.

Table 5
RMSEs and MAPEs for all days and by months, calculated on the test set
of operating area 2.

Months RMSE (Scaled DTh) MAPE (%)

Original Clean Original Clean
All days 52.62 32.88 20.27 12.43
January 2009 25.39 24.52 2.36 2.22
February 2009 38.87 38.12 2.79 2.75
March 2009 44.12 2743 2.70 2.27
April 2009 48.62 39.63 34.11 18.40
May 2009 42.17 38.54 52.88 19.06
June 2009 25.33 23.11 45.41 2473
July 2009 131.29 21.55 28.01 24.70
August 2009 35.94 29.36 33.40 9.89

cleaned data sets are each used to train the same fore-
casting model and calculate out-of-sample root mean
squared errors (RMSE) and mean average percentage er-
rors (MAPE). The errors are calculated on the test set from
01 January 2009 to 31 August 2009 using Vitullo’s natural
gas demand forecasting model (Vitullo et al., 2009)

Vi = Po+ ﬂ1HDDWTrefH + B, AHDDW + ﬂgCDDTrEfC

+Ba sin(w) + Bs cos(@) (D). (9)

The coefficients (8;, i = {0,...,3}) are explained in
Section 4.1. B4 and Bs are used to model the variation in
the natural gas demand by the day of the week (DOW). f (t)
is used to model the effects of holidays and days around
holidays on the natural gas demand.

The replacement values for all anomalies found are
calculated using the same linear regression model as is
used for anomaly detection. The cleaned data set obtained
is presented in Fig. 5.

The RMSEs and MAPEs calculated using both the
original and clean data sets are presented in Table 5.
Table 5 depicts the RMSEs and MAPEs both on average
for all days in the test set and by month. The RMSEs and
MAPEs calculated on the clean test set are smaller than
those calculated on the original test set for all months.
On average, the RMSEs computed on the test set using
models trained on the clean data set are 37.5% smaller than
those computed on the test set using models trained on the

original data set. The MAPEs are also improved by 7.84%.
The maximum observed improvement in RMSE, 83.6%, is
obtained for the month of July (due to cleaning of the data
point ] and the power generation subset shown in Fig. 3).
The maximum observed improvements in MAPEs, 33.8%,
20.6%, and 23.5%, are obtained for the months of May, June,
and August, respectively. The high MAPE values are due
primarily to the negative flow values that occur in the
summer.

The imputation model used in this case is a naive model
that does not include the particularities of natural gas
time series, such as trends and seasonality components.
Therefore, the use of robust forecasting models for data
imputation could improve the forecasting accuracy further
and reduce the errors. The data imputation models could
be substituted easily in the natural gas time series anomaly
detection algorithm.

6. Conclusion

This paper presents a two-stage method that combines
two probabilistic anomaly detection approaches in order
to identify and classify anomalies in historical natural gas
time series data. First, a natural gas time series anomaly
detection algorithm is used to identify anomalies; then
a Bayesian maximum likelihood classifier is trained for
each type of anomalous feature that has enough training
samples. For each test data point, it is determined whether
the point is anomalous, and its label is obtained using the
classifier. We can be certain that a data point is anomalous
ifitis labeled anomalous by both the natural gas time series
anomaly detection algorithm and the Bayesian maximum
likelihood classifier. The techniques are applied to the
daily reported natural gas consumption of a utility, and
provide good results. The improvement in forecasting
accuracy obtained by cleaning the data, with replacement
values calculated using a naive imputation model, is
37.5% on average for RMSEs, and 7.84% for MAPEs. The
percentage forecast accuracy could be improved further by
using robust forecasting models for data imputation. The
Bayesian maximum likelihood classifier could be improved
by adding exogenous inputs to the reconstructed phase
space, and also, the data sets could be normalized using
surrogate data techniques, to overcome the lack of training
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samples for some types of anomalies. This method could
also be extended to other fields such as electric energy,
econometrics, or finance, if the exogenous factors of the
time series data are known.
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