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Abstract— Natural gas production companies use 

pipelines to transport natural gas from the extraction 

well to a distribution point. The internal pressure of 

these pipelines is closely regulated to maintain a 

steady-state system. Sensors are used to collect real-

time pressure information from within the pipe, and 

alarms are used to alert the control operators when a 

threshold is exceeded. If operators fail to keep the 

pipeline’s pressure within an acceptable range, the 

company risks being shut-in (unable to distribute gas) 

or rupturing the pipeline. Predicting pressure alarms 

enables operators to take appropriate action earlier to 

avoid being shut-in and is a form of predictive 

maintenance. We forecast alarms by using an 

autoregressive model (AR) in conjunction with alarm 

thresholds. The alarm thresholds are defined by the 

production company and are occasionally adjusted to 

meet current environment conditions. The forecasting 

results show that we can accurately predict pressure 

alarms up to a 30-minute time horizon. 

Index Terms— Steady-state System, Predictive 

Maintenance, Autoregressive Model, Natural Gas 

Pipelines Alarms, Alarm Thresholds. 

I. INTRODUCTION TO NATURAL GAS PRODUCTION, 

PIPELINE CHALLENGES, AND ALARM FORECASTING 

 

The transportation of natural gas introduces a variety 

of challenges as natural gas production companies try to 

maintain safe, economical, and efficient operations. By 

the time the gas enters the pipeline and travels to the 

distribution point, it is expected that the gas meets certain 

specifications set in place by either state law or the 

customer receiving the gas [1]. If the gas meets these 

standards, the pipeline is referred to as being in a steady-

state. If the gas does not meet these standards, the 

production company runs the risk of being shut-in, or 

being unable to flow any more gas through the distribution 

point until the poor-quality gas is removed. 

Being shut-in is costly and time consuming for the 

production company. For the pipeline to become 

functional again, the unexpected gas must either be 

diffused with gas further down the line or flared from the 

system entirely. To avoid this, a pipeline control room 

monitors the condition of the natural gas within the 

pipeline to coordinate its processing before it reaches the 

distribution point [2]. With the help of forecasted alarms, 

it is possible to alert the controllers in advance if the 

natural gas further down the pipeline moving towards the 

distribution point will be considered unacceptable by the 

time it arrives [3]. In our paper, the pressure measured at 

the distribution point is the variable forecasted to help 

controllers deliver acceptable gas in a safe and reliable 

way.  

Forecasting alarms with machine learning is 

commonly approached with either classification or 

regression [4, 5]. The output of a classification-based 

model is binary: An alarm is either present or not present. 

A regression-based approach predicts future values, and 

these future values are compared against rules that define 

an alarm and thus are used to forecast alarms. The benefit 

of a regression-based model is in its output, since it can be 

used to diagnose the state of the pipeline rather than just 

an alarm being imminent. Several models can be trained 

with multiple time horizons that give control operators 

more discretion in avoiding unsafe states or unacceptable 

gas. 

Our paper is organized as follows: Section 2 presents 

background of the natural gas industry and description of 

our autoregressive model. Section 3 describes our 

methods in predicting alarms. Section 4 shows the results 

of our regression model, and the ability to forecast alarms. 

Finally, Section 5 concludes our current work. 

We are reporting work sponsored by a natural gas 

pipeline company in the U.S. The data has been scaled to 

preserve confidentiality. 

 

II. PROJECT BACKGROUND AND INCENTIVE 

The goal of this paper is to develop a method to 

forecast natural gas pipeline pressure alarms to help 

control room operators maintain a functioning pipeline.  
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A. Natural Gas Production Process 

Natural gas has become a leading energy source in 

the United States [6]. Its abundance and energy potential 

makes it a cost-effective energy source for heating, 

cooking, and electric power generation [7]. 

Natural gas production companies extract raw 

natural gas from the ground, which consists of a variety of 

combustible hydrocarbons, gases, water, and oil. 

Processing raw natural gas strips away most components 

until only methane and ethane remain [8].  Once the 

correct make-up of the natural gas has been achieved, the 

gas is considered to be pipeline quality natural gas. The 

gas is then compressed and transported through a pipeline 

to its distribution point.  Pipelines typically have several 

sensors to measure pressure, flow, and temperature. The 

forecast values can be used to predict alarms that are 

triggered if certain thresholds are breached. 

B. Linear Autoregressive Time Series Model 

An autoregressive model is used to forecast future 

pressure values using past observances. An AR model 

takes the form  

 

𝑦𝑡̂(𝑦⃗) = F(𝑦𝑡−1,𝑦𝑡−2…𝑦𝑡−n), 
 

where 𝑦𝑡−n represents a lagged value from the original 

series and 𝑦𝑡̂ is the forecasted value at time horizon 𝑡. 

Linear regression is often used in forecasting energy 

demand and is used as a viable technique in [7, 9, 10]. 

 

III. METHODS  

This section presents the data, defines a pipeline 

alarm, and shows how the alarm forecasts are made.  

A. Natural Gas Pipeline Data 

The data from a production company was cleaned and 

resampled. Cleaning the data consisted of imputing data 

rows where the time series was corrupted. Sampling rates 

were inconsistent, so the time series was resampled by 

using zero-order hold every 1 minute. The cleaned time 

series spans from 1 January 2018 to 22 May 2018, in 

204,476 steps. Figure 1 shows the alarm thresholds with 

the corresponding pressure time series. The first half of 

the data is used for training, the second half is used for 

testing.  

 

B. Alarm Definition and Prediction 

A regression-based approach to predicting alarms is 

used in favor of a classification-based approach because 

the alarm thresholds can be changed after the algorithm is 

deployed. In practice, unsafe and alarm-triggering values 

are avoided by control operators, which makes actual 

alarm occurrences in reported data scarce. Since alarms 

are triggered when a threshold is exceeded, a regression 

model can not only predict when an alarm will trigger but 

tell expected values at multiple time horizons to allow 

operators to perform more appropriate corrective action. 

The forecast values calculated from our models were 

compared against four thresholds – high-high (HH), high 

(H), low (L), and low-low (LL). The exact thresholds and 

their occurrences within our data is summarized in Table 

1. 

TABLE I: ALARM THRESHOLDS AND THEIR OBSERVED 

OCCURANCES AND PERCENTAGE 

 Threshold 

(psi) 

Occurrences Frequency 

(%) 

HH 9.01 1567 0.77 

H 8.96 4997 2.44 

L 8.54 4016 1.96 

LL 8.49 3010 1.47 

 

C. Linear Autoregressive Model Implementation 

An autoregressive predictive model was used to 

forecast pressure values 1 through 30 minutes into the 

future. The model takes the form 

 

𝑦̂(𝑦⃗; 𝛽) = 𝛽0+ ∑ 𝛽i𝑦𝑡−𝑖

10

𝑖=1 .

 

 

The predicted future pressure value 𝑦̂ is calculated using 

the last ten minutes of pressure data, 𝑦⃗, and weights 𝛽. 

The model is autoregressive. The forecast 𝑦̂ is obtained 

from using previous time steps as input in the regression 

equation. The variable 𝑦𝑡 represents the pressure at the 

current time. Subsequently, 𝑦𝑡−1 is the pressure recorded 

one minute in the past, 𝑦𝑡−2 is the pressure recorded two 

minutes in the past, etc. The pressure values are extracted 

and placed in a design matrix 𝐴. Because the model uses 

the last ten minutes of pressure data, A is filled with 

lagged pressure values spanning from the first timestamp 
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 FIGURE 1: SCALED TIME SERIES PRESSURE DATA AND ALARM THRESHOLDS WITH TRAINING SET IN BLUE AND TESTING SET IN ORANGE

pressure value back to ten minutes in the past with a bias 

coefficient in the first column. 

 

𝐴 =  

1 𝑦0 𝑦1 … 𝑦10

1 𝑦1 𝑦2 … 𝑦11

⋮ ⋮ ⋮ … ⋮
1 𝑦𝑛−10 𝑦𝑛−9 … 𝑦𝑛

 

 

Let 𝑏⃗⃗ be a column vector of the pressure values 

with the incorporated ten-minute lag. 

 

𝑏⃗⃗  =  

𝑦10+ 𝑇𝐻

𝑦11+𝑇𝐻

𝑦12+𝑇𝐻

⋮
𝑦𝑛+𝑇𝐻 .

 

 

𝑇𝐻 represents the forecast time horizon. Least squares 

regression solves the system of equations. 

IV. RESULTS OF AR MODEL 

Our focus is to predict alarms. However, since we 

approach this task with regression, we offer metrics to 

show that our method predicts well. Mean absolute error, 

mean absolute percent error, and root mean square error 

are used as regression metrics. Our alarm classification 

metric is sensitivity, defined as the true positive rate, or 

in our application, the fraction of gas pipeline alarms that 

are correctly predicted. 

 
FIGURE 2: MAPE MEASURED ACROSS TIME HORIZONS 1 – 30 

A. Regression Error Metrics: 

The AR model begins forecasting at step 102,238, 

which is a span of about 71 days. The reason for this is 
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because time steps 1 – 102,238 are used to train the AR 

model (training dataset).  All steps beyond are used as the 

testing dataset. Time horizons 1-30 minutes are 

forecasted and considered in these results. Figure 2 shows 

that the pressure RMSE is less than 3.5 x 10-4 scaled psi 

across all time horizons.Figure 3 shows that the MAPE is 

less than 0.13% across all time horizons. 

 

 
FIGURE 3: RMSE ACROSS TIME HORIZONS 1 – 30 

 

Figure 4 shows the sensitivity (how many times the 

algorithm correctly predicted at each time horizon). One 

indicates 100% accuracy. Here we can see that the alarm 

prediction accuracy falls approximately linearly from 

near 100% accuracy at 1 minute to 60% accuracy at 30 

minutes. 

 
FIGURE 4: SENSITIVITY ACROSS TIME HORIZONS 1 – 30 

 

V. CONCLUSION 

This paper presents a method for warning gas 

production control operators of unacceptable gas with a 

pipeline. The results show that we can accurately forecast 

the pressure time series up to a 30-minute time horizon. 

This translates into true positive rates that drop of linearly 

from around 100% at one minute to approximately 65% 

at a 30-minute forecast horizon. This means that at 30 

minutes, we correctly forecast 65% of the alarms. We 

speculate that the sensitivity drops as quickly as it does 

due to our forecasts fluctuating back and forth over 

certain alarm thresholds. 
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