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ABSTRACT 
AN UNSUPERVISED CLUSTER: LEARNING WATER CUSTOMER BEHAVIOR USING 

VARIATION OF INFORMATION ON A RECONSTRUCTED PHASE SPACE 
 
 
 

Michele Rae Bizub Malinowski, M.S., P.E. 

Marquette University, 2018 

The unsupervised clustering algorithm described in this dissertation addresses the need to 
divide a population of water utility customers into groups based on their similarities and 
differences, using only the measured flow data collected by water meters. After clustering, the 
groups represent customers with similar consumption behavior patterns and provide insight into 
‘normal’ and ‘unusual’ customer behavior patterns. This research focuses upon individually 
metered water utility customers and includes both residential and commercial customer accounts 
serviced by utilities within North America. 

The contributions of this dissertation not only represent a novel academic work, but also 
solve a practical problem for the utility industry. This dissertation introduces a method of 
agglomerative clustering using information theoretic distance measures on Gaussian mixture 
models within a reconstructed phase space. The clustering method accommodates a utility’s 
limited human, financial, computational, and environmental resources. The proposed weighted 
variation of information distance measure for comparing Gaussian mixture models places 
emphasis upon those behaviors whose statistical distributions are more compact over those 
behaviors with large variation and contributes a novel addition to existing comparison options. 
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1 RESEARCH MOTIVATION AND SUMMARY OF WORK 
1.1 Overview 

The unsupervised clustering algorithm described in this dissertation addresses the need to 
divide a population of water utility customers into groups based on their similarities and 
differences, using only the measured flow data collected by water meters. Two motivations drive 
this work - a commercial motivation to provide useful segregation of customer data and an 
academic motivation to create a new method of comparing two models. The agglomerative 
clustering method considers the practical limitations of a utility’s resources, accommodating 
limitations in resources. The academic contribution of this work, the weighted variation of 
information distance measure, presents a novel component-weighting scheme for emphasizing 
components of Gaussian mixture models with compact distributions.  

1.2 Commercial Motivation 
Since 2011, more than 25% of the US has coped with drought conditions. In California, 

one of the most severely affected areas, over 45% of the state has experienced drought conditions 
over the same period, increasing to over 90% for 2016 [1]. Even though the 2016-2017 winter 
brought record precipitation to California, filling surface reservoirs, the subterranean aquafers 
remain low. These depleted groundwater sources supply between 30 and 46 percent of the 
California water needs [2]. In response to the long-term drought, the state has outlined an 
aggressive water conservation plan via The Water Conservation Act of 2009, Senate Bill X7-7, 
targeting 20% reduction in overall water consumption per capita by December 31, 2020. 
Municipalities have responded with conservation ordinances introducing severe restrictions of 
water use including irrigation system flow limits, watering date/time restrictions, and punitive 
monetary fines for violations [3]. These restrictions and conservation projects require timely 
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water consumption data and processing to enforce the ordinances, as well as educational and 
targeted communication with the water consumers. 

The water utilities need an easy method to identify which customers’ behavior is within 
the accepted normal patterns, and which customers’ behavior is wasteful, fraudulent, or in 
violation of regulations. The unsupervised clustering algorithm presented in this research fills the 
need for grouping customers by behavior. This assists the utility to determine customers needing 
additional scrutiny and those that do not. The output of this algorithm is a hierarchical diagram 
grouping all customers compared with each other using an information-theoretic distance 
measure based on the temporal behavior patterns observed within the collected flow 
measurements.  

1.2.1 Water Industry Background  
This section describes the infrastructure components and the system management of a 

typical North American water utility and explains the data collection methods and how data is 
aggregated for this research. 

1.2.1.1 North American Water Utilities 
While over 15 million American households rely upon private well sources for water [4], 

the remaining 110 million households are connected to public water supplies. Likewise, the vast 
majority of commercial and industrial applications use public water supplies. Those public and 
municipal water utilities must carefully monitor the water they provide for public safety, billing, 
and resource management. 

In North America, water is typically collected from surface reservoirs, freshwater rivers 
or lakes, or subsurface wells. This untreated source water is transported using gravity or pumps to 
a treatment plant prior to distribution. The treatment plants remove particulate matter through 
sedimentation, coagulants, flocculation, and, finally, filtering. After the particulates have been 
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removed, the water is disinfected and stored for distribution [5], [6]. Water distribution and 
storage systems in the United States often employ elevated tanks, which serve to store water and 
to provide a pressure head sufficient to support the gravity-fed distribution system temporarily in 
the event of a pump outage. From the storage system, the water flows through large diameter 
transmission lines to local distribution pipes commonly called “water mains.” The mains 
crisscross the entire distribution zone to supply the service lines as well as fire service 
connections (hydrants). Service lines are the connection points to individual properties and can 
vary in diameter from a typical residential ¾” line to an 8” or larger line providing water to an 
industrial facility [7]. Figure 1.1 shows an example of a utility water system for a small 
community: Anytown, USA. The source feed from a well or the lake is indicated in blue. This 
water is treated at the utility and distributed through transmission lines (grey). The transmission 
lines reduce into distribution mains (green) and finally into supply lines (orange) of various sizes 
based on end use. Wastewater reclamation and treatment is not shown on this diagram. 
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Figure 1.1 Anytown, USA, water distribution network 

1.2.1.2 Meter Reading 
Since the mid-1800s, public and private utilities have provided water to residential, 

commercial, and industrial customers. Service fees, such as labor costs, system maintenance, and 
infrastructure improvements, as well as the actual volume of water delivered impact the 
operational costs of the utility. In North America, these costs are represented as infrastructure fees 
in addition to the fee for the actual water delivered to the premises. Since the volume of water 
delivered relates directly to the cost of supplying that water, the billing systems must also account 
for the delivered volume. In North America, two billing schemes dominate: Non-metered and 
metered billing. 

Non-metered billing occurs when the water usage is calculated based on the property 
size, intended use, and amenities. A typical non-metered bill considers number of bathrooms, 
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total square footage, and whether the location is residential or commercial. Some non-metered 
bills are computed from a neighborhood master meter, dividing the total volume delivered to the 
neighborhood by the number of properties serviced. 

In contrast, metered billing indicates the service line has a mechanical (developed mid 
1800s) or electronic (developed early 1900s) flow meter installed [8]–[11], measuring the flow 
volume to the property. Some properties may have more than one service line, and thus, more 
than one meter used to compute the total bill.  

Originally, all meters used mechanical register dials, similar to an odometer on a vehicle, 
to record the total volume passing through the meter. These mechanical dials required a meter 
reader to physically locate each meter, visually read the numerical total displayed, and manually 
record the measured flow. Installations where the meter was located within a basement or 
crawlspace required the meter reader to enter the premises or to leave a postcard for the 
homeowner to transcribe the meter reading and return to the utility. As with any manual process, 
this introduced errors within the data. 

Later, the mechanical registers included optical coupling mechanisms to read the dial 
placement, generating a digital signal to report the measured flow to other systems – telephonic, 
inductive coupling, and radio frequency networks [10]. Over the last few decades, water utility 
companies have begun installing automated meter reading (AMR) systems to further simplify the 
process of meter reading, decrease manual labor, and reduce transcription errors within collected 
data [12]. These systems allow more frequent reporting of measured demand at the individual 
customers, while simultaneously reducing the manual effort of physically looking at each meter 
to record the volume measured. 
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1.2.1.3 Meter Data Management  
Figure 1.2 illustrates a basic AMR system for Anytown, USA. The system has radio 

transmitters connected to each utility meter, sending a radio telegram of the status and recorded 
volume at predetermined intervals. Handheld- or vehicle-mounted mobile radio receivers are 
connected to a computer and database system for automatic collection, transmission, and 
aggregation of the data. All properties in Anytown (residential, commercial, industrial, 
municipal) have a water meter and a radio installed either in a pit in the yard or as a remote unit 
in a basement. The image identifies each water meter and radio as a Badger Meter, Inc. ORION® 
device. The utility may monitor these radio transmissions through walk-by systems with handheld 
receivers, drive-by systems with vehicle-mounted receivers, or through a fixed-network using a 
cellular, LAN, Wi-Fi, or proprietary backhaul installed throughout the area. Regardless of the 
collection method, every meter is monitored by the utility, and all reads are collected and 
aggregated for evaluation and billing. 
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Figure 1.2 Anytown, USA, automatic meter reading (AMR) and automated metering 

infrastructure (AMI) systems 

Recently, utilities have begun installing automated metering infrastructure (AMI) systems 
to support the desire for increased meter reading frequency and near-real-time monitoring of the 
water distribution system. AMI systems generally involve a network of fixed-location radio 
receivers, called collectors, to monitor and aggregate the transmitted details of all meters within a 
service area. The records are sent through a network to the utility office, where back-end software 
allows the utility to investigate performance of the system and trends in the customer behavior. 
The meter and AMR/AMI system manufacturers produce various proprietary back-end software 
packages, each with its own algorithms and features. These systems are sometimes called 
“Advanced Metering Analytics” (AMA) systems, and one example is illustrated in Figure 1.3. 
AMA systems nearly eliminate the manual effort of data collection for billing purposes and 
enable the utility to monitor daily, hourly, or even sub-hourly flow measurements. The AMA 
system components include the same brass or composite meters used in any meter reading 
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application. These meters have an encoder to monitor the total volume and a local display. The 
encoders also translate the readings via a digital signal to a radio or cellular endpoint. The meter, 
encoder, and endpoint are all installed at the property, either in an underground meter pit or 
within the structure. Data collection occurs through walk-by (not pictured), mobile, or fixed-
network receivers; and the data is transmitted securely via backhaul to a hosted service. Utilities 
and customers can view their water usage via an internet portal or smartphone app. This allows 
users to monitor their consumption, identify leaks and inefficient use, and manage billing. 

 
Figure 1.3 Badger Meter, Inc. BEACON® advanced metering analytics system 

Whether the readings originate from manual reads, mobile receivers, or fixed networks, 
all are imported into the utility’s water data management system. This system contains the meter 
readings, billing records, customer information, and other system details. Depending upon the 
data management system, statistical features, trending, and basic analysis are available for the 
system managers. Currently, many water data management systems are focused on providing 
system status, flow measurements, and error reporting information to the utility, but only limited 
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access to this data for the consumers. The newest reporting systems, as shown in Figure 1.4, 
supplement a monthly or quarterly bill expressing a cumulative total consumption with consumer 
portals to the database. Figure 1.4 shows a sample customer record indicating a modest increase 
in water usage over the previous week, a small leak, and the measured volume over time in 
multiple charts. These portals present current and historical measurements in hourly or sub-hourly 
increments, allowing customers to better interpret the impact of their habits on water 
consumption. Expanding access to interpreted water consumption may improve compliance with 
ordinances and can empower customers to make better conservation decisions [13], [14]. 
Profiling reports interpret each household’s habits, alert the consumer to a pattern that is wasteful 
or inefficient, and suggest a list of investigations or actions to take. Algorithms such as those 
presented in this research will continue to improve the quality of information provided to the 
customers, empowering them to make informed decisions. 
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Figure 1.4 Badger Meter, Inc. EyeOnWater® customer data portal 

Data for this research has been collected by the Badger Meter, Inc. BEACON® Advanced 
Metering Analytics system, capable of collecting, recording, and reporting water consumption 
across utilities with hourly or finer resolution of readings and direct-to-consumer interfaces. This 
platform collects water records, providing a unique database of time-based consumption data for 
all types of water utility customers.  

1.3 Academic Motivation  
Identifying similarities in time series data is not a problem unique to the water industry. 

The implementation of clustering within time-series data spans technology, utilities, finance, and 
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art, among other fields [15]. Beyond water, other utilities have similar needs for classifying gas or 
electric energy consumers based on their behavior [16]–[19]. Financial institutions use behavioral 
spending patterns to identify credit card fraud [20]. Telephonic and conferencing systems cluster 
sounds to identify speakers within a meeting for transcription [21], [22]. Music classification 
systems determine the genre, artist, or component instruments within a work [23], [24]. 

As sensors and data collection become pervasive in our daily lives, more opportunities 
for time-series classification will be identified. In many of the applications mentioned above, 
some type of probabilistic model represents the data. These models are then compared to each 
other, and a distance between pairs of models is computed and used for assigning clusters. No 
single approach to clustering data models is a panacea for every domain. The research described 
here outlines a new combination of processing steps to create a model, comparing multiple 
models using information-theoretic distances, and weighting the importance of components 
within the model based on the statistical parameters of the components themselves.  

1.4 Summary of Contributions 
This dissertation contributes a new method for processing water meter time series data as 

well as a novel approach to weighting components within a probabilistic model. Existing research 
on water meter flow measurements focuses primarily upon very high resolution data (sub-minute, 
minute, or quarter-hour) with a goal of identifying specific behaviors (shower, laundry, 
irrigation); whereas this research has focused upon the hourly data. The clustering method 
described here is more suitable and flexible for implementation in a real system where sometimes 
the optimal number of clusters cannot be used due to limitations of the utility finances, resources, 
or staffing. This application fits Gaussian mixture models after casting the time series into a 
reconstructed phase space. The agglomerative hierarchical clustering step combines customer 
models using information-theoretic distance measures. 
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The weighting variation of information distance measure presented here offers another 
option for comparing Gaussian mixture models, allowing more emphasis to be put on the 
components of the model with compact distributions. This scheme follows the desire to discount 
behaviors with large variation and weight behaviors with highly repeatable patterns more heavily. 

1.5 Dissertation Outline 
This introductory chapter has discussed the incentive for a new approach to the 

unsupervised clustering of time series. It has also introduced the water utility domain, as well as 
providing a summary of the contributions within this research. The rest of this dissertation is 
organized in a non-traditional manner. Experimental methods are presented in order of 
computation rather than as specific chapters identifying the theoretical background, individual 
methods, experiments, and results. Each section provides references to historical work, relevant 
mathematical definitions, and examples applying the concept to data collected from the water 
meter records. 

Chapter 2 introduces the data, data cleaning, and initial steps taken prior to clustering. 
This includes preprocessing for normalization and filtering. The high-dimensional data is reduced 
into a more manageable set of representative Gaussian mixture models to facilitate the clustering 
process. The individual existing techniques described in Chapter 2 are described as a foundation 
for the novel combination of methods presented in this work. 

Chapter 3 describes the clustering process. Hierarchical agglomerative clustering, is 
explained in detail. Several distance measures are described and defined, including the variation 
of information distance originally applied to the Gaussian mixture models within this research. A 
thorough explanation is provided of the output linkage and dendrogram. Numerous examples 
using both cartoon and actual data are presented to aid the explanation, as well as references to 
supporting research.  
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The first clustering experiments naturally follow in Chapter 4. Each experiment goal is 
described, followed by the experiment itself, the results, and discussion on the findings. These 
results identify the need for a more robust clustering approach with fewer variations in the 
groupings of customers between subsequent trials. Chapter 5 presents the novel model 
component-weighting scheme. The theory, mathematical definitions, and systematic examples are 
thoroughly described. Experiments of Chapter 4 are repeated using the component weighting. A 
comparison between the results with and without the component weighting illustrates the 
improvement in consistency of the clustering behavior. Finally, Chapter 6 reviews the findings 
and contributions, and suggests paths for future research.  
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2 DATA, PREPROCESSING, AND DIMENSIONAL REDUCTION 
The next few chapters describe the methods and experiments in detail. Figure 2.1 shows a 

flow diagram of the techniques applied in this work and calls out the highest-level description of 
each step. The steps on the left are presented in the same order within this dissertation.  

To begin, this chapter defines time-series data and the notation used to describe it. An 
explanation of the specific data collected for this experiment follows, along with additional 
background about the data collection and the limitations of the system. Then, we discuss the data 
preprocessing. Preprocessing includes data cleaning, normalization of values, and basic filtering 
to prepare for evaluating different customers to each other. Each customer has a large set of 
individual points, requiring an intermediate dimensional reduction step to keep the computational 
complexity manageable for clustering. The dimensional reduction includes casting the data into a 
phase space and representing the customer by a probabilistic model within this space. This 
chapter concludes with each customer individually represented as a model. 
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Figure 2.1 Flow diagram of the methods and experiments in this research. 

2.1 Time-Series Data 
Within any large set of data, groups of similar items exist. Unsupervised clustering is the 

process of training a program to identify these groups within unlabeled data. Much of the research 
historically has been applied to clustering of static, unchanging, data; but within the last few 
decades, clustering of dynamic time-series data has become more common [15], [25]–[27]. 

A time series is an ordered collection of measurements for a variable, indexed with 
respect to time. The measurements are collectively defined as a set:  

  2, , , ,t t t tx x x x    X   .  (2.1) 
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Each measurement tx    occurs at a time t , with a measurement interval . While a 
constant value of  is not required, the research presented here uses only data with constant 
measurement intervals. 

The behavior of X is governed by some probability function of the system. This 
probability function may or may not be known, and it may or may not be stationary. In the case of 
this research, the probability function is not known, may be different for every customer, and is 
not stationary over time. The natural changes over time may involve one or more periodic signals 
(seasonal, weekly, daily) or an increasing or decreasing trend. Clustering of time series data can 
be performed on raw input data, extracted features, or data models based on the posterior 
probability computed from collected samples. Frequently, the input data requires additional 
preprocessing steps prior to clustering, such as time warping, changes to the sample rate, 
cleaning, or filtering [15], [26]. 

When comparing large sets of raw time-series data, the computational and storage space 
requirements quickly become unmanageable. Many options exist to reduce the dimensionality, 
sometimes through time-domain transformations such as symbolic aggregate approximation [28], 
[29], and perceptually important points or landmarks [30]. Other dimensional reduction 
techniques use an eigenvalue or correlation matrix evaluation such as principal component 
analysis, curvilinear component analysis, Sammon maps [31], or spectral clustering [32]. The 
model-based approaches often transform the data from the time domain into another domain such 
as a frequency representation [33]; a probability-based approach such as the hidden Markov 
model [34] or Gaussian mixture model, described in detail later; or a phase space, based on time-
lag sampling of the data [35]. A model may implement one or more of those transformations. 
Each technique strives to reduce the large data set into those characteristics that are most useful to 
classify the set among its peers, reducing the complexity of the clustering problem. 
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2.2 Description of Data Used in These Experiments 
Research data have been drawn from the cloud-based Badger Meter, Inc. BEACON® 

Advanced Metering Analytics (AMA) system. This database of hundreds of utilities maintains 
historical records for meters with equipment details, measured flow, time stamps, and status 
information throughout the life of the meter. Hundreds of thousands of endpoints are tracked 
daily in the system. Unique identifiers for the meter, radio endpoint, and customer label each 
record within the system, but have been anonymized for this research, and no personally 
identifiable information is presented here. All records are used with permission from their 
respective owners. 

The source data used in this study comprise a group of 99 meters from a Midwestern 
utility with approximately 4 years of historical records archived within the BEACON® AMA 
system. Experiments and examples using a single customer have been drawn from this collection 
as well. For this research, all customers are assumed to have resided in their homes for the 
entirety of the sample period, with no changes in ownership of a property. This is a naïve 
approach, and future work should investigate methods to identify changes related to ownership or 
commercial usage of a property. 

All collected water records for this study have a 1-hour reading interval. This is in 
contrast to historical meter reading with standard monthly or quarterly intervals, influenced by 
billing periods [36]. Studies of electrical utility customer behavior [31], [37]–[42], and the work 
of Willis et al. [43] focus primarily upon high resolution (sub-minute) data sampling. Cardell-
Oliver uses hourly interval data for identifying end uses within a consumption record [44]–[46], 
but other uses of medium resolution data have not been identified. Data collected from the 
BEACON® AMA system includes the flow volume as well as status alarms from the meter, radio, 
and collector. These status alarms may include continuous flow, no reported flow, naïve 
disaggregation, and communication errors. Data with naïve disaggregation and communication 
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errors are excluded from the study, while those with continuous flow and no reported flow are 
included. Only the recorded flow volume and time stamps are preserved as inputs to the 
clustering process. The other status alarms regarding flow are not used. 

The water meters in this study translate the mechanical measurement of a volume into a 
numerical value on the meter, much like an automotive odometer tracks the miles traveled by a 
vehicle. Each hour, the total measured gallons is sent to a recording device, and this value is 
stored in the database. The result is a volume of water measured by the meter during an hour of 
time, described as gallons per hour. However, the flow rate of the water is not necessarily 
constant during the measurement period. A three-gallon toilet flush once per hour will appear the 
same as a small continuous leak. The discrete measurements are also presented on charts that may 
be interpreted as continuous flow when, in fact, the water consumption occurred sporadically. 
Extended periods of zero consumption may occur between usage periods, but become 
undetectable at this resolution. The recorded measurements throughout this dissertation describe 
flow as “gallons per hour,” but the reader is encouraged to remember the limitations of this unit 
of measure and the resolution of the meters. 

2.3 Data Preprocessing 
Data preprocessing refers to the steps needed to make the collected data work correctly in 

an algorithm. This includes removing erroneous data caused by errors not in the scope of the 
research, often called data cleaning; scaling or normalizing the data, if required for comparing 
series with different bounds; and filtering data to remove high-frequency noise added by the 
behavioral jitter of imperfect human schedules. The main purpose of preprocessing is to allow the 
algorithm to function correctly without using erroneous inputs to generate erroneous outputs. 
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2.3.1 Data Cleaning 
Due to the imperfect nature of real world applications, the data collected by any sensor 

network are riddled with anomalies. Commonly encountered water utility meter anomalies 
include: 

 Missing data caused by equipment, data processing, or communication channel 
failures 

 Broken distribution, supply, or local pipes 
 Naïve disaggregation by the data collection system due to interrupted 

communications  
 Human data entry errors, especially of manually read or manually entered flow 

measurements 
 Mismatched meter and encoder/register units 
 Outliers and unusual consumption patterns. For this research, outliers are of 

particular interest as a group to themselves. 
 Incorrectly installed meters 
 Improperly sized meters 
 Encoder or register errors, including mechanical dial jitter and calibration errors 
 Damaged or mechanically obstructed meters 

 
 Data cleaning is a broad topic left for other researchers to explore in detail [47], and only 

those methods used to prepare the data for this study are addressed here. 

The algorithm in this experiment is not designed to accommodate large gaps in the data. 
During the data cleaning process, the longest continuous set of hourly measurements without any 
missing, aggregated, or negative flow data is selected for evaluation, discarding other data. The 
BEACON® AMA system can disaggregate values naïvely, but it stores an internal flag for those 
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records, permitting the detection and removal of disaggregated data that would otherwise affect 
the overall performance of the method. Future research should address this limitation and 
accommodate periods of missing data. 

2.3.2 Normalization 
Since the goal of this research is to find behavioral patterns that are similar, the actual 

volume of consumption is less important than the magnitude of a particular event with respect to 
the typical consumption for the customer. This approach identifies and groups customers with 
similar daily or weekly behavior routines. To achieve this, the data is normalized individually per 
customer record prior to clustering, as explained below. The normalized data provides behavioral 
clusters, customers with the same schedule, but perhaps have fewer household occupants or a 
smaller scale business. These clusters allow the utility to identify usage patterns that span 
segments of the population. 

Water meters in residential properties sit idle for many hours of the day while the 
occupants are at work or asleep, resulting in a majority of recorded data to indicate zero volume. 
Likewise, many commercial meters sit idle during the evening or early morning hours when the 
business is closed. Figure 2.2 shows a few days of recorded hourly consumption values for a 
residential customer. The periods indicating zero consumption coincide with time spent sleeping 
or at work during the weekdays. A histogram to the right shows the recorded values, as well as 
the overall median and non-zero median, described below. 
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Figure 2.2 Recorded hourly consumption values and histogram of values for a residential 

customer 

The zeros themselves are not unusual, but the number of zero measurements can create 
computational problems. Traditional normalization by median or mean is deceptively small, due 
to the large quantity of zeros in this data; or erroneous, due to divide-by-zero errors. Instead, the 
median of non-zero values is used – this is the number associated with the 50th percentile of 
consumption for all non-zero consumption records. Using the time series 

  2,  ,  , ,  ,t t t tx x x x    X   , (2.2) 

take the median of the set of X , excluding values in X  equal to zero 

 
  0Med Median 0  X X . (2.3) 

0Med X  is the non-zero median. Dividing the original data by 0Med X  produces the normalized 
data:  

 normalized
0Med 


X

XX  . (2.4) 

Normalizing the recorded values for each customer in this manner allows comparison 
between customers of different size (number of household members or size of business). The 
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comparison then identifies common behavioral patterns, regardless of the volume of the 
consumption pattern. Figure 2.3 illustrates eight days of normalized consumption for a single 
customer. 

 
Figure 2.3 Non-zero mean normalized consumption for a residential water customer over eight 

days 

2.3.3 Low-Pass Filter 
Human behavior does not always adhere to strict time schedules. One example of this is a 

family that wakes between 0645 and 0715 to get ready for the day. The shower activity may 
occur during the 0600 hour, during the 0700 hour, or split between the two hours. Additionally, 
the water meter endpoint radios individually maintain local clocks, which may drift with age or 
temperature. To mitigate this behavioral time jitter and systematic drift, a low pass filter is 
applied to the hourly data. 

As water consumption behaviors rarely exceed an hour duration, simple average of three 
consecutive hours is not as appropriate as a triangular filter of the same three consecutive hours 
[48]. This 3-point triangular filter accommodates consumption patterns that may not align exactly 
with the temporal hourly records. The sum of these weights is constrained to unity to avoid 
misrepresenting the normalized flow volume. The filter assigns weights of ¼, ½, and ¼ to each 
point,  
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      2 1
1 4 2 4

t t t
t

x x xz       . (2.5) 

The result is a smoothed time series representative of the underlying behavioral patterns 
throughout the day and week. Figure 2.4 illustrates the effects of the low-pass filtering compared 
to the original normalized data. The low-frequency daily behavior trends are maintained, while 
reducing the high-frequency noise related to the specific hour on the clock during the recorded 
behavior. 

 
Figure 2.4 Non-zero median normalized consumption as measured and with triangular low-pass 

filtering 

After the preprocessing steps of cleaning, normalizing, and filtering are complete, the 
individual data records are prepared further for the clustering process through dimensional 
reduction. 
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2.4 Dimensional Reduction 
The time series in any individual customer record contains thousands of hourly flow 

measurements. Comparing these sets directly would be cumbersome and computationally 
intensive. Reducing the large set of individual measurements to a small set of model parameters 
for each customer makes the comparison more manageable. This section describes our two-step 
process of dimensional reduction using a reconstructed phase space (RPS) and creating Gaussian 
mixture models (GMM) of the data within the space. The resulting customer models are directly 
compared to produce groups of customers, as described in the next chapter. 

2.4.1 Reconstructed Phase Space 
The evaluation of a time series allows the discovery of an internal structure or trend 

within the data. Earlier in this chapter, Equation (2.1) defined a time series as a set, X . Each 
measurement tx   is referenced to time t , with a measurement interval . Knowing the internal 
structure allows prediction of future values, anomaly detection, understanding of the underlying 
nature of the system, and identification of particular components with the most information. 
Within this work, residential water consumption habits are the primary influence on the time 
series measurements. 

Consider the weekday water consumption habits of a particular family of four – two 
adults who work outside the home between the hours of 0900 and 1700 and two children who 
attend school between September and June. Figure 2.5 shows the weekday consumption records 
of such a family for 159 weekdays, aligned from 0000 to 2400. Two periods of frequent 
consumption activity are visible – a morning period before and an afternoon/evening period at the 
end of the school or workday. The morning behavior is more consistent consumption due to 
shower activity, which the California Single Family Water Use study found to be an average of 
18.2 gallons per shower [49]. The time of departure for work tends to be constant for the majority 
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of shift work employees, supported by evidence from residential water customer weekday 
patterns. 

 
Figure 2.5 Household water consumption for 159 weekdays 

If the individual and household behavior were perfectly predictable—never varying in 
volume or time, one could forecast the exact consumption given only the time of day. In reality, 
the system varies – hitting snooze on the alarm, waking early to run an errand, returning home 
during lunch to pick up a package, etc. Instead of creating a specific value associated with a 
specific time, the consumption pattern can be modeled by a series of states such as “sleep,” 
“morning,” “mid-day,” “evening,” and “irrigation,” shown in Figure 2.6. Transitions between 
these states, the orange arrows in Figure 2.6, happen in a pattern within a probability distribution. 
While the exact value cannot be guaranteed, the system is governed by the sequence of the 
underlying pattern known as a trajectory. Knowledge of the trajectory enables the estimation of 
all future states, given the current state. This trajectory is called an attractor by Takens [50]. 
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Figure 2.6 States of a weekday consumption pattern for a single-family household 

One way to study these systems is to cast the time series into a vector space such that any 
location within the space identifies the system state at that moment [51]. Phase space embedding 
[51], [50] is an established method to represent a system in a vector space chosen to illustrate the 
dynamics of the original system most clearly. Figure 2.7 illustrates the embedding of a few data 
points as an example. Two groups of repeated behaviors are shown, red dots indicate behaviors 
occurring on a 24-hour schedule, and blue dots indicate behaviors occurring on a weekly, 168-
hour, schedule. The embedding process, indicated by the colored arrows, shows how groups form 
within the vector space with axes corresponding to 0-, 24-, and 168-hour time lags. 
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Figure 2.7 Embedding from a time series into a vector space forces groups of points to form 

based on repetitive behaviors corresponding to the time lag. 

When the time series is embedded into the phase space, a single point is defined as a 
vector Y  of points from the original series X each separated by time lags m  to produce the 
dimensions within the space. The subscript m indicates the particular dimension associated with 
that lag m : 

 1 2, , , mt t tx x x     Y   . (2.6) 

These vectors are plotted in the newly defined phase space as a topological embedding of the 
original system [50]. 

Kantz and Schreiber [51] describe methods to guide proper choice of the embedding 
dimension m , time delay m , and a thorough explanation of reconstructed phase space 
embedding. The embedding dimension m  must be chosen such that duplication resulting from 
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the system does not affect the performance of predictions, and algorithms can easily navigate the 
phase space. 

Kantz and Schreiber [51] discuss the concept of false nearest neighbors (FNN) as one 
technique to determine a suitable lower bound for m .  

  
 

1all points
1all points

distance between nearest neighbors in dimension 
distance between nearest neighbors in dimension 1

m
mFNN  

   (2.7) 

When data is projected into a phase space, the sequential points trace a path. In a proper 
embedding, points that are close to one another within the phase space are also close to one 
another in trajectory and future states. That is, points representing mid-day activity should always 
follow two points in the phase space representing morning activity. If the phase space has been 
folded upon itself, two points may be false neighbors, representing two entirely different 
trajectories. Computing FNN requires identifying the nearest neighbor to every point within an 
embedding of dimension 1m . A proper embedding will have little effect on nearest neighbor pairs 
if the dimension is increased to 1 1m  , because the added dimension is redundant to the system. 

Finding appropriate time lag m  is dependent upon the internal workings of the system. 
Kantz and Schreiber [51] offer two suggestions for estimating m . One suggestion is to start with 

m  equal to one-quarter the period of a periodic component within the signal. The second 
suggestion involves plotting different values of m  to watch the data unfold and to choose a lag 
that has neither collapsed upon itself in a single direction nor is too complex. For the household in 
question, Figure 2.8 shows different embeddings with dimensions of zero- and various-hour time 
lags. The comparison shows some combinations have more structure of repeated patterns like the 
top row center (2-hours lag) and bottom row right (24-hours lag); and others have collapsed into a 
diagonal, such as the top left (1-hour lag). The top right (4-hours lag) and bottom left (6-hours 
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lag) show a few paths deviating from the primary trajectories along the two axes. These may be 
helpful to identify specific anomalous behaviors. 

 
Figure 2.8 Time-delay embeddings of residential customer at different delays 

This work focuses upon an embedding with dimensions of 0-, 24-, and 168-hour lags. 
The result of the embedding is a plot with groups of data forming at coordinates corresponding to 
repeating daily or weekly (24- or 168-hour) behaviors. Figure 2.9 illustrates the data from one 
customer as plotted on the phase space with 0-, 24-, and 168-hour lags.  



30 
 

 

 
Figure 2.9 Normalized, smoothed, flow measurements for a residential customer embedded in 

phase space with 0-, 24-, and 168-hour lags 

Figure 2.10 illustrates behavioral groupings within the RPS for a single customer. Colors 
indicate different clusters, with the centroid marked as a black x. For simplicity, this plot is 
generated by clustering with average Euclidean distance, but any clustering method could be 
implemented. The number of clusters is purposely chosen as a large value to identify as many 
groups as possible within the RPS, and no effort has been taken to optimize the number of 
clusters. The corresponding time series in Figure 2.11 has been colored using the zero-lag term of 
the RPS data point, allowing the comparison of time series points to their RPS location based on 
matching colors between the plots.  
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Figure 2.10 Reconstructed phase space with customer data colored by clusters using average 

Euclidean distance measure 

 
Figure 2.11 Time series data for customer in Figure 2.10, colors correspond to the zero-lag term 

from the RPS 

This particular meter location appears to be largely unused after early October, when the 
previously routine usage patterns disappear, and only minimal volume is recorded. Easily 
identified behavior patterns include the high consumption volume purple data showing a strong 
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weekly component, visible as a cluster in the upper right portion of the RPS in Figure 2.10, and 
moderate consumption red and orange data also appear as a cluster in the RPS. 

These phase space illustrations within this chapter are generated with the aid of the 
publicly available RPS Toolbox functions for embedding a time series into a reconstructed phase 
space using MATLAB® [52]. After embedding, dimensional reduction occurs by representing the 
embedded data by a Gaussian mixture model. 

2.4.2 Gaussian Mixture Models 
The technique of Gaussian mixture models (GMM) exploits the ability to represent a 

complex, unknown, system as a combination of known systems; specifically, normal Gaussian 
distributions [53]. Other work has shown the validity of representing time series data as 
probability distributions [54]. The GMM also is used to reduce dimensionality of high-dimension 
data sets into a model representative of the original data. For example, three years of data can be 
represented as a set of four or five Gaussians in the reconstructed phase space, each with mean 
and standard deviation in all phase space dimensions [55], [56], and a magnitude to bound the 
expected value of the range. The GMM representation requires 3dk  terms, with k-component 
Gaussians and d dimensions. Thus, describing a five-component GMM in three-dimensional 
phase space requires 45 terms, regardless of the number of original data points. Equation (2.8) 
defines a k-component GMM of dimension d as the model X̂ , estimating the time series X . 
Each component  ,d μ Σ  is a multivariate normal distribution, 

   
1

ˆ ,k

i
d i

 μ ΣX   . (2.8) 

This section explains the creation of a GMM using a simple example in 1-dimensional 
space and then expands the GMM into the phase space discussed in the previous section. The 24 
hourly measured flow recordings for two Mondays from a residential customer are shown as thin 
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lines of green and orange in Figure 2.12. This example is typical of many households with 
bimodal early morning and evening flow patterns. The figure also shows this data represented as 
a two-component GMM, the heavy blue line. In this example, the period between hours 0700 and 
0900 has the highest expected value of water usage per hour, indicated by the tall peak in the 
GMM at that time. A lower expected value exists between hours 1800 and 2100. Early morning, 
before hour 0500, indicates a very low expected value of water usage. 

 
Figure 2.12 Hourly flow recordings for a residential customer with two Monday time series and a 

Gaussian mixture model representing the time series 

Each component of the GMM is represented by a value indicating the central tendency 
along the time domain; in this example, this central point is the mean time of the component 
within the GMM. In addition, the component requires a measurement of the width, or dispersion 
of data along this same axis, in this case it is the standard deviation of the normal distribution. 
Finally, this one-dimensional example requires a magnitude of the component to represent the 
maximum expected value if the modeled range has not been normalized to one. 
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A more accurate probabilistic model is formed by taking a large number of patterns and 
fitting the combination to a GMM. The improved accuracy arises from the GMM representing 
enough data to be confident that the resulting model is a probabilistic portrayal of the underlying 
long-term behavior. Figure 2.13 shows 137 measured flow records for Mondays and the GMM 
superimposed on the same axis to illustrate the distinct bimodal pattern of behavior often 
associated with persons who work first shift jobs. This illustrates the very consistent morning 
consumption patterns between hour 0500 and 0900 in the morning and the much less consistent 
afternoon/evening consumption pattern and the GMM component width and magnitude reflect 
the more reliable expected values. 

 
Figure 2.13 Gaussian mixture model and Monday flow records for 137 weeks of data, one 

residential customer 

In contrast to the Monday patterns illustrated in the previous figures, the same plots for 
Sunday, Monday, and Tuesday can be seen in Figure 2.14, emphasizing the significant change in 
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water consumption behaviors between weekdays and weekends. The plots in Figure 2.14 also 
have been created with 137 weeks of data. 

 
Figure 2.14 Gaussian mixture models with Sunday, Monday, and Tuesday flow records for one 

residential customer 

These examples have all used one dimension for simplicity, but a GMM may be created 
in any number of dimensions. A three-dimensional GMM can model the data from the previous 
section as embedded within the phase space with 0-, 24-, and 168-hour time lags as axes. 
Previous research has been performed using GMM representations with and without embedding 
in reconstructed phase spaces. Combinations of Gaussian mixture models fit to data in an RPS 
have been studied by Povinelli et al. [57]. Their work applies the GMM within RPS to electric 
motor currents, to electrocardiogram recordings, and to the TIMIT speech corpus. Model tuning 
for the work in [57] is limited to the number of mixtures within the data, and the results indicate 
acceptable performance for signal classification. McKenna et al. use GMMs without phase space 
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embedding to represent hourly water consumption data and instead use k-means clustering to 
classify different groups based on these daily flow patterns [58]. 

The left portion of Figure 2.15 shows data from a single customer’s meter records 
embedded into the phase space using the techniques presented in Section 2.4.1. The data are 
colored by the associated component of the GMM as assigned by the MATLAB® function 
fitgmdist, available within the statistics toolbox of MATLAB® [59]. The right portion of Figure 
2.15 shows wireframe ellipsoids representing the components of the GMM. The wireframes are 
drawn using the MATLAB® function plot_gaussian_ellipsoid, available at MATLAB® Central 
File Exchange [60] using the vectors of mean and variance generated by the GMM creation of 
[59]. These ellipsoids are located at the corresponding component centroid and illustrate the 
component shapes within the space, the colors match the components on the left image. The 
wireframes indicate regions of expected values for water consumption behaviors within this phase 
space for this customer. A small region volume indicates a dense population of data falls into this 
component while a large volume indicates a more dispersed population within the component. 
The magnitude component of the GMM is related to the location within the phase space of these 
regions. 

 
Figure 2.15 Data from a single customer embedded in the phase space (left) and represented by a 

Gaussian mixture model of five components (right) 
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These models are an imperfect representation of the original data, but trade the large 
memory footprint of the complete dataset for a much smaller footprint of model parameters. 
Clustering within the population of all customer models is possible upon completion of these 
preprocessing and dimensional reduction steps. The next chapter will address several clustering 
techniques and distance measures developed by others and offer an in-depth discussion of the 
specific methods used to compare the models within this work. 
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3 HIERARCHICIAL CLUSTERING AND DISTANCE MEASURES 
 The clustering process forms groups of similarly behaved customers after the models are 

created from clean, normalized, and filtered data. For reference, Figure 3.1 outlines the entire 
process of methods and experiments used in this research. This chapter focuses upon the 
clustering of the data and introduces commonly applied methods for clustering time series data. 
Then, the chosen hierarchical agglomerative clustering technique is explained in detail. After the 
clustering technique is described, a section is devoted to discussing various distance measures 
used in clustering research and presenting arguments for choosing the variation of information in 
this work. Finally, this chapter discusses the use of a dendrogram to display results, and further 
discusses interpretation of dendrograms found in the experiment results shown in the next 
chapter. 
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Figure 3.1 Flow diagram of the methods and experiments in this research. 

3.1 Techniques for Clustering Time-Series Data 
As noted previously, time-series data clustering is not a unique, or even new, concern. 

Dozens of industries rely upon time-series data and classification thereof. While some datasets for 
research have labels, a large quantity of applications for studying time-series data involve 
unsupervised learning. Many real-world sensor networks, including the Badger Meter, Inc. 
BEACON® Advanced Metering Analytics (AMA) system, do not have expert labeling for every 
data point. This requires the application of an unsupervised clustering algorithm—clustering 
without the feedback expert labels can provide. 
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The goal of unsupervised clustering is to assign groups or partitions within a data set 
based on some measure of similarity. Individual elements are assigned a value with respect to 
other individuals using a distance measure to determine the magnitude of difference between 
them. Specific examples of distance measures are discussed later within this chapter. Upon 
completion, the clustering algorithm results are evaluated as ‘good’ or ‘poor’ based on some 
criteria relative to the original problem or structure of the clustering results, as described in the 
next chapter. Distance measures, clustering algorithms, and criterion functions are heavily 
problem- and domain-dependent. A clustering algorithm that performs well for classifying music 
genre may perform poorly when attempting to find fraudulent credit card transactions. 

Other research explores clustering of energy customers using smart meter data. 
Panapakidis et al. [18], [19] implement clustering of electric smart meter data. As opposed 
creating models such as our research, their work clusters the daily typical load profiles within a 
particular customer’s data set. Representatives of those clusters are used to complete the second 
stage clustering across the population of all customers. Their work illustrates the complex 
problem of identifying the optimal number of clusters in a diverse data set. In contrast to the 
Panapakidis work, the clustering method presented in this work does not require a definition of an 
optimal number of clusters. 

Bose and Chen track changing cluster populations over time using fuzzy c-means 
algorithms [61], [62]. Their work focuses upon migratory patterns of cellular phone customers, 
for the purposes of tracking dynamic market demands and customer retention. Their data exhibit 
not only customers who migrate from one cluster within the data to another, but also the 
formation of new clusters and dissolution of others as new behavior patterns emerge within the 
population. 

A related problem arises in clustering music. Genre classification is not an identical 
problem, as the entirety of the work is available at time of classification. The whole song is 
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already produced and recorded, but similarity exists in the approach to first model the music, and 
then compare the model with others during the classification step. Logan and Salomon create 
models using the audio spectrum of the composition and then cluster multiple works using earth 
movers distance [23]. Jensen et al., create Gaussian mixture models from the Mel frequency 
coefficients within a work, then cluster those models based on three different distance measures – 
Kullback-Leibler distance, earth movers distance, and normalized least squares [63]. 

Another popular algorithm, spectral clustering, simplifies the problem by reducing the 
dimensionality in a different manner. First, the similarity matrix is constructed as a representation 
of the commonalities between every pair of data samples. Then, a graph Laplacian is computed 
from this similarity matrix. The clustering operates on eigenvectors from this graph Laplacian 
matrix and some predetermined clustering algorithm such as k-means or c-means. Spectral 
clustering algorithms vary on the specific details of constructing the graph Laplacian and the 
clustering step, but the same framework applies [16], [32], [64]. 

Statistical modeling of biological time-series has been applied to electrocardiogram data 
for classifying specific heart rhythms [57], [65]. In this work, Povinelli et al. cast the time-series 
signals into a reconstructed phase space and further apply Gaussian mixture models to represent 
the attractor within the reconstructed phase space. These models then classify a new time-series 
as a particular heart rhythm, aiding in medical diagnosis. The clustering method used to group 
water meter time series in this dissertation is similar to that of [56] and [64], and is discussed in 
detail in the next section of this chapter. We extend this method by clustering different customer 
models using the variation of information distance measure. 

Some existing research classifies water usage based on metering data. Laspidou et al., use 
quarterly water billing information and self-organizing maps to cluster customers based on 
consumption [36]. Willis et al. [43] and Cardell-Oliver [44]–[46] investigate fixture-level 
consumption patterns to identify specific end uses of water in a location using high-resolution 
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metering. Other research focuses upon partitioning a utility’s entire water distribution network 
into the optimal district metered areas (DMA) for processing groups of customers sourced by the 
same supply mains [58], [66]. Related research using smart meter flow data has produced outlier 
detection and forecasting algorithms [67]–[69] and leakage detection methods [70]. In contrast to 
this existing water utility research, our work focuses upon clustering similar customers based on 
temporal behavior patterns using only the hourly flow measurements recorded in the BEACON® 
AMA system. 

3.2 Hierarchical Agglomerative Clustering  
Hierarchical agglomerative clustering [26], [71] forms groups within the data by first 

assuming each sample is a unique group with only one data point. As the algorithm steps through 
each successive stage of clustering, more points are merged into ever-larger clusters. 
“Agglomerative” refers to the addition of new points to a cluster at each stage, in contrast to 
“divisive” clustering, which begins with all points in one group and divides the group into ever-
smaller populations until the final stage where each sub-group has only one member. The 
hierarchy is the relationship between every data point and every sub-cluster of any size in the 
clustering process. 

One of the biggest challenges to unsupervised clustering is choosing the correct number 
of groups within the population. Many papers present methods to compute the number of clusters 
as well as validity measures to prove the number of clusters chosen is correct [72]–[74]. Unlike 
several other clustering algorithms, hierarchical agglomerative clustering maintains the entire 
sequential process of joining. With this information, fixing the number of clusters before 
initiating the clustering process becomes less important. Eliminating the need to define the 
number of clusters in advance comes at a computational price, with hierarchical clustering having 
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a complexity of  2O N , compared to the  O Nkd  complexity of k-means clustering with k  
clusters and dimension d [26], [71]. 

An example of the hierarchical agglomerative clustering process is presented here to 
illustrate the individual steps within the entire procedure. Suppose a group of data has been cast 
into the feature space shown in Figure 3.2. 
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Figure 3.2 Agglomerative clustering example 

The axes of the feature space in the upper right of this example can be any dimensions, 
using any distance measure to determine the “near” and “far.” For this example, consider the 
distance measure to be a geometric measurement between the closest edges of any two clusters. 
Specific distance measures used in clustering problems are described in detail later, within the 
next section of this chapter. As the clustering progress is discussed in stages, the feature space in 
the upper right will indicate new clusters formed at each step. Likewise, the dendrogram view in 
the lower left reflects the distance between clusters at the time of join based on a consistent 
distance measure, and new links within the dendrogram are drawn at each step. 
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Initially, every point in the feature space is a singleton cluster with distance zero, shown 
in Figure 3.2. During the first merge step in the agglomerative hierarchical clustering process, the 
two clusters with the smallest distance between the closest edges are identified and combined to 
form a new cluster. The dendrogram shows a connector joining the two clusters with a horizontal 
length proportional to the distance between the clusters within the feature space, as defined by the 
distance measure used for clustering. This process is illustrated in Figure 3.3. 
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Figure 3.3 Merge step 1 of the hierarchical agglomerative clustering process 

The merge process iterates to join the next two nearest clusters at each step, considering 
both the remaining singleton clusters and the clusters formed by previous joins. This continues 
for each new step, as in Figure 3.4. The new clusters continue to merge and expand, enveloping 
the members as they are joined. 
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Figure 3.4 Three steps of the hierarchical agglomerative clustering process 

At the final step, only one cluster exists, containing all the original data points. The final 
dendrogram in Figure 3.5 illustrates the entire merge process and maintains all the distance 
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information of the clustering process. This visual representation is stored as a table of merge steps 
with linkage distances and cluster populations for simple manipulation.  
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Figure 3.5 Final merge step of hierarchical clustering and the final dendrogram linkage 

After the final merge step, all clustering information is stored within the dendrogram and 
the associated linkage table. This allows the user to decide on the number of clusters desired post 
hoc. In many commercial applications, the number of clusters is affected by external 
requirements having nothing to do with the mathematically optimal number of clusters within the 
data set. For water utilities, the number of clusters desired may be influenced by limitations of 
labor, physical resources, or financial resources available. The hierarchical clustering allows the 
utility to apply these limited resources efficiently and effectively. Alternatively, a more rigorous 
statistical method may be used to determine the optimal number of clusters within the data if no 
external constraints apply [75], [76]. 
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Regardless of the method chosen to determine the number of clusters, the dendrogram is 
cut to form the clusters as shown in Figure 3.6. Visually, a vertical line is drawn on the 
dendrogram (shown in red dashes), intersecting the horizontal lines representing the different 
clusters. Since the vertical line intersects three horizontal lines, the data is divided into three 
clusters. Figure 3.6 illustrates three clusters: {abcd}, {efgh}, and {i}. The upper right corner of 
the illustration identifies the clusters in the feature space. 
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Figure 3.6 Cutting the dendrogram to form clusters 

In MATLAB®, the recorded historical clustering sequence is called a linkage. The 
linkage contains every pair of sub-clusters joined at a particular step along with the separation 
distance between those two sub-clusters at time of join. After clustering is complete, the 
population can be divided into any number of clusters from the stored linkage data. The user can 
choose the desired number clusters at time of use and adapt the number of clusters to the business 
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case at hand. Such cases may include a high-level “normal vs. abnormal” grouping or breaking 
the population into several behavioral groups for targeted marketing and conservation campaigns. 

The main benefits of the hierarchical agglomerative clustering technique relate to the 
flexibility of storing results in a linkage. In addition to not needing a priori knowledge of the 
number of clusters within the data, the entire linkage is stored, allowing the data to be clustered 
into any number of sub-groups, as the requirements or applications dictate. If a group of utility 
customers has been clustered in this manner, one application can determine four sub-groups for 
different conservation marketing campaigns with a simultaneous application of two larger groups 
as “normal” assigned no follow-up, and “outliers” requiring follow-up in-person site visits to 
investigate abnormalities. Further, as the utility’s customer base fluctuates and changes, the 
clustering algorithm does not assume any fixed number of groups as the one correct answer and 
can change to reflect the dynamic underlying structure of the customers. 

3.3 Distance Measures 
As the previous section noted, hierarchical agglomerative clustering requires the 

definition of a distance measure to identify the two most similar sub-groups to join at each step of 
the clustering process. Several different distance measures have been studied including, 
geometric distances, population-based distances, probabilistic distances, and information-
theoretic distances. 

The terms “measure” and “metric” are not synonymous. From the mathematical sense, a 
metric must satisfy the so-called metric axioms [77], illustrated graphically in Figure 3.7. 
Consider a space of three clusterings, 
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For a distance measure   describing the distance between A , B , and C shown in 
Figure 3.7, to be considered a metric, it must  

1. Be non-negative and equal zero if and only if the clusters are equal 
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, 0
, 0 ;

A B
A B A B
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
     (3.2) 

2. Be symmetric 
    , , ; andA B B A    (3.3) 

3. Satisfy the triangle inequality 
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Figure 3.7 Illustration of the three properties required for a metric 

3.3.1 Geometric Distance Measures 
One commonly used geometric distance is the Minkowski distance, a generalization of 

the Euclidean distance metric. Hashem and Humaid [78], Chicco [79], and Rao and Cook [80] all 
present utility consumption classifying solutions using the Euclidean or Minkowski distance. The 
Minkowski distance pL  of order p is 
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The Minkowski distance satisfies the triangle inequality for values of 1p  , making the 
Minkowski distance of orders 1p   a true metric. As Figure 3.8 illustrates, Minkowski distance 
of order one, 1L , corresponds to Manhattan or taxicab distance, and order two, 2L , corresponds 
to the Euclidean distance. 
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Figure 3.8 Minkowski distances of order 1 and 2 between clusters A and B 

However, as [77], and [78] illustrate, within high dimensional data, the elements or 
subgroups within a set are separated by large distances, and the Euclidean/Minkowski distances 
become less useful as a clustering measure. Other distance metrics can be used, such as the cosine 
distance (vector dot product). The cosine distance uses the angular distance between vectors [83], 
[84] to determine the similarity of two elements, eliminating some of the problems associated 
with Euclidean distance. If a b is the dot product, and a  is a vector norm, the cosine distance is 
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3.3.2 Earth-Mover’s Distance 
The earth-mover’s distance (EMD) computes a minimum cost required to transform a 

given probability distribution into a different distribution [63], [85]. This is compared to the labor 
cost of moving a pile of earth from one shape and location to a different shape and location as 
shown in Figure 3.9. Computing the EMD begins by finding the total flow,  

 ijF f     , (3.7) 

between two clusterings, 
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composed of individual clusters ia  and jb  with associated weights aiw  and bjw , and a distance 

ijd  defined between clusters ia  and jb . The flow F minimizes the overall cost of work 
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i j
W d f
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  , (3.9) 

subject to constraints: 

1. allow flow in one direction only (from A to B, not in reverse): 
 0 1 1ijf i m j n      ; (3.10) 

2. limit the quantity exported to the weight of the source cluster: 
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3. limit the quantity received to the weight of the destination cluster: 
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4. require the movement of the most weight possible: 
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Upon solving the optimization under these constraints for F , the earth mover’s distance 
normalizes W by F , 
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Figure 3.9 Earth mover's distance is based on the cost associated with work effort when 

transforming one distribution into another, as if the distributions were soil being moved by a 
shovel. 

3.3.3 Population-Based Distance Measures 
Population-based distances rely upon the members of each cluster under consideration to 

determine the similarity. The adjusted Rand index (ARI) compares two possible resulting 
clusterings and counts the pairs of members agreed or disagreed upon between the two, while 
correcting for change [86].  

Given clusterings A  and B , the contingency table is drawn as follows, where every 
entry ijn  corresponds to the number of agreements in both clusterings. 
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The ARI is 
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An ARI value of one indicates exact agreement between the clusterings, and a value of zero 
results from randomly assigning clusters. 

The Fowlkes-Mallows index (FMI) is a population-based measure similar to the Rand 
index based on the agreements and disagreements of pairs within two clusterings. The FMI 
compares entire hierarchical clustering trees at each value of k clusters and allows us to compare 
within a tree to determine if additional clusters add benefit to the overall clustering [87]. Given 
clusterings A  and B , the contingency table entries ijn  correspond to the number of agreements. 

The total population has n  elements, and the row and column sums are annotated by in   and jn , 
respectively. 
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The FMI is 

  
2

1 1

2 2
1 1

,
 

k k
ij

i j
k k

i j
i j

n n
FMI A B

n n n n
 

 


        

 
  

.  (3.18) 

3.3.4 Information-Theoretic Distance Measures 
Information-theoretic measures such as Kullback-Liebler divergence, Mutual 

information, and variation of information [77] are also used for clustering. The Kullback-Liebler 
(KL) divergence, or relative entropy, is related to the penalty of mistakenly describing one 
probabilistic model with an erroneous model. The KL divergence is asymmetric, and a symmetric 
version can be computed by determining the average of the two directional KL divergences 
between two models [25], [54], [88]. The KL divergence between two probabilistic models is  

       , ln a xKL a b a x b x  , (3.19) 

where  a x  and  b x  have been created from the same random variable x. Care must be taken 
to select sufficient data when creating the models, as an event predicted impossible by one model, 
  0b x  , but possible by the other,   0a x  , results in  ,KL a b  . 
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KL is not a true metric, as it does not satisfy the triangle inequality, nor is it symmetric: 

    , ,KL a b KL b a .  (3.20) 

A symmetric version of KL is 

    , ,KL KL a b KL b a   . (3.21) 

The KL divergence is the cost of assuming an incorrect probabilistic model. In 
information theory, this may be the cost of additional bits for storage or transmission of data 
when a non-optimal coding scheme has been applied. In the game of chance illustrated in Figure 
3.10, the gambler places bets with the assumption of a pair of six-sided dice. However, the game 
is actually played with one four-sided die and one eight-sided die. This erroneous assumption 
changes the probabilities of several roll values, and the gambler loses money by not 
understanding these probabilities correctly before betting. 
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Figure 3.10 KL divergence is the cost of assuming the game is played with the probability 

distribution on the left, but the reality shows different dice are used. The dice affect the odds, and 
the gambler loses money. 
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Mutual information (MI) describes the amount of information known about one 
probabilistic model through knowledge of a second probabilistic model. MI is the information 
shared by the two models, defined as 
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The models  and A B each contain one or more components,  and i ja b . MI is illustrated in Figure 
3.11 and is used to compute the variation of information [16], [82], [89]. 

Variation of information (VI) is a measurement of how much information is lost when 
combing two groups as opposed to keeping the groups separate. Unlike mutual information, VI is 
a true metric [77], satisfying the triangle inequality and also allowing comparison of clusters with 
different populations. We chose VI as a distance measure for this research because of these 
desirable properties. 

The VI distance between two sets is the sum of unique information that would be lost if 
the two sets are combined. With the MI as defined by Equation (3.22) and individual entropy of 
each set  
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the non-intersecting parts of all sets are collectively 

        , 2 ,VI A B H A H B MI A B      .  (3.24) 
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The relationships between the individual entropy of each set, the intersection of the two 
sets (MI), and the VI are clarified in a Venn diagram such as Figure 3.11. 

Mutual Information

Variation of Information

H(A) H(B)

 
Figure 3.11 Venn diagram describing relationships between entropy, mutual information, and 

variation of information [77] 

3.4  MATLAB® Implementation of Hierarchical Clustering for GMM with VI 
The hierarchical clustering algorithm is programmed with MATLAB®. The clustering has 

three main operations. The first computes the variation of information distance between two 
models. Next, the join process merges the two models with the smallest distance. Finally, a 
linkage table stores the joins and a dendrogram is generated to display the results in a graphical 
manner. These three operations are described in detail here, including references to the significant 
MATLAB® functions used in each step. 
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3.4.1 Computing Variation of Information 
Computing the distance between two subsets is essential to the hierarchical clustering 

algorithm. The VI distance metric describes the amount of information lost when two models are 
combined into a new model. In three dimensions, the VI corresponds to the non-overlapping 
volume of two convex hulls within the three dimensional space. If the two hulls are coincidental, 
the VI is small, and combining the two into a new cluster loses very little information. 
Conversely, if the two hulls are entirely separate, the VI is large and reflects the large loss of 
unique information if they are combined. Hulls that overlap partially or touch will fall somewhere 
in between these two extremes. 

Several functions in MATLAB® and functions shared through MATLAB® Central File 
Exchange facilitate the comparison of convex hull volumes for estimating the VI between two 
models [59], [60], [90]–[92]. Recall a GMM of k component Gaussians in d  dimensions is 

   
1

ˆ ,k

i
d i

 μ ΣX   . (3.25) 

A central location vector 

  1 2, , ,k d  μ   (3.26) 

describes each Gaussian component and a d d  covariance matrix, 
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An ellipsoid hull is computed to model each Gaussian mixture component for a particular 
customer, and a geometric tessellation of the hull is plotted within the phase space using the 
plot_gaussian_ellipsoid function [60]. The volume of this ellipsoid hull, 
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estimates the entropy of this component of the Gaussian Mixture Model, with jr  being the radius 
of the ellipsoid for any axis. The volume is an output of convhulln MATLAB® function [90], 
computed based on the Qhull method [91]. A summation of all GMM component hull volumes,  
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estimates the entropy of the customer model. If a customer has perfectly consistent water 
consumption behaviors, the associated GMM component volumes will be small. As variations in 
the consumption behavior or temporal patterns increase, the GMM component volumes will also 
increase. 

Two models are compared to each other by computing the points of intersection of the 
GMM component hulls. Figure 3.12 shows a simple model with spheres, illustrating the 
intersection between the two hulls as a solid volume. When the surface of one hull is located 
within the enclosed volume of a second hull, an intersection is present. A boundary for the 
intersecting volume is created by first identifying the set of points on the surface of the large 
sphere that exist within the volume of the smaller sphere with the aid of the function inhull from 
MATLAB® Central File Exchange [92]. Then, we identify the reciprocal set of points on the 
surface of the small sphere that exist within the volume of the larger sphere. A new convex hull is 
created with the combined set of intersecting points using the convhulln MATLAB® function 
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[90]; and the volume of the intersecting hull is provided as an output of that function. Additional 
computations address the special cases when the hulls are coincidental, not intersecting, or if one 
is fully enveloped within the other. This intersecting volume approximates the mutual 
information (MI) between the two components.  

 

 
Figure 3.12 Visualizing mutual information (intersecting volume) of two customer models 

Since the summation of all model component volumes enclosed within a hull estimates 
the entropy H of the particular customer model, the summation of all the intersecting (filled) 
volumes between two customer models is the estimated MI between those two customer models. 
The variation of information is the sum of all volumes from both models (A and B), subtracting 
double the volume of the MI 

        ˆ ˆ ˆ ˆ, 2 ,VI A B H A H B MI A B      .  (3.30) 
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Gaussian mixture models with multiple components represent customers in this study, 
creating interactions that are more complex. Figure 3.13 illustrates two customers, each with 
several Gaussian components in the model. Each component is shown as a wireframe ellipsoid, 
and all components for one customer have the same color. The combined volume of all the hulls 
outlined in green estimates the entropy of the green customer. Likewise, the combination of all 
volumes in blue estimates the entropy of the blue customer. Wireframe ellipsoids illustrate each 
component of the GMM, with the intersection between the green hulls and blue hulls represented 
as a solid volume.  

 
Figure 3.13 Four-component Gaussian mixture models and the mutual information volume for 

two customers 

Intersections are computed between the entire group of green hulls and the entire group 
of blue hulls. Therefore, a single hull may intersect any number of hulls from the other customer, 
or none at all. Expanding Equation (3.30) yields estimated entropies 



63 
 

 

    
1

ˆ ˆn
i

i
H A H A


 , and  (3.31) 

    
1

ˆ ˆm
k

k
H B H B


 . (3.32) 

The estimated mutual information 
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and the estimated variation of information 
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In the example using four Gaussian components for each customer model, 4n m  . 
Thus, the estimation of MI for two four-component models requires 16 computations, one for 
each pair of components. 

Due to the random seeding of the models and imperfect alignment of coincidental hulls, a 
floor of zero is enforced for V̂I . This eliminates negative distances between customers that may 
occur during the computation. The estimated VI distance is computed initially between every pair 
of customer models within the set, and then new computations are made as models are joined 
during the hierarchical clustering process. 

3.4.2 Computing a New Hull when Two Models are Joined 
At each step in the clustering process, the two models with the smallest V̂I are joined. 

The join process introduces more error into the method, but approaching it this way allows 
quicker computation of the resulting joined model. 
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The two models to be joined each already have a set of points defined at the surface – the 
points used to compute the geometric tessellation of the hull. Joining the models uses the 
combined set of points from both hulls to form the source for a new hull. Since each hull is 
already evenly distributed at one standard deviation around a geometric center, forming a new 
GMM with fitgmdist [59] from the combined set of surface points and then creating new hulls for 
each component of the GMM using convhulln [90] approximates a convex join between the two 
models in phase space. After the formation of a new GMM from the join, the V̂I distance must be 
computed between the newly joined model and the remaining models in the space. Subsequent 
steps of the clustering process ignores the previous individual components and only compares V̂I
of the merged cluster. The recursive process continues, joining the next closest pair of clusters at 
each step until all customers have been combined into a large cluster. 

At each step, the distance and cluster populations at time of merge are recorded in a 
linkage table to facilitate reconstruction of the hierarchical clusters. Hierarchical agglomerative 
clustering allows any number of clusters to be chosen by the user after the clustering process has 
completed. This eliminates the need to predict how many clusters exist within the data or to 
predetermine the clusters the data is forced into. The hierarchical clustering also provides 
flexibility for the utility to choose to increase or decrease the clusters desired based on the 
specific task. 

3.4.3 Using a Dendrogram and Linkage Table to Display Results 
While the linkage data table containing VI distance at time of the join and the population 

is sufficient for a database or software, humans require a more visually pleasing presentation. For 
this study, a dendrogram illustrates the cluster populations, merge operations, and the relative 
distances between any two clusters at time of merge. Figure 3.14 shows a simplified example of a 
population, as well as a dendrogram constructed from an agglomerative clustering of the 
population. Table 3-1 shows the equivalent linkage record stored to create the dendrogram. The 
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left column of Table 3-1 identifies the join occurring in a particular step of the hierarchical 
clustering process. 

a

b
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e
distance

a

c

e
d

 
Figure 3.14 Sample population for hierarchical agglomerative clustering algorithm and 

corresponding dendrogram 

Table 3-1 Sample linkage record for agglomerative hierarchical clustering 

Clustering 
Step 

First Cluster to be 
Joined 

Second Cluster to 
be Joined Distance New Cluster 

1  C   D  1  ,C D  
2  A   B  2  ,A B  
3  ,A B   ,C D  3  , , ,A B C D  

4  , , ,A B C D   E  6  , , , ,A B C D E   

In Figure 3.14, five original clusters exist. Clusters A and B are close to each other, as are 
C and D. Cluster E is far from the others. The dendrogram representation of the clustering shows 
these relationships with the distance between two members of a new clustering on the horizontal 
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axis. Since C and D are overlapping, the VI distance between them is very small; joining these 
into a larger cluster would lose very little information. A and B are touching, but not overlapping 
as much as C and D, indicating a small VI distance, but still longer than the join between C and 
D. The cluster {A, B} is closer to {C, D}, with a distance further than either of the previous joins 
on the dendrogram. Finally, the join between {A, B, C, D} and {E} occurs to complete the 
agglomerative clustering. 

The next section of this dissertation will introduce the first set of experiments. The 
experiments implement the methods presented in Chapter 2 and in this chapter on a set of 99 
customers from a Midwestern utility. These experiments are designed to demonstrate the 
usefulness and the limitations of the hierarchical agglomerative clustering using variation of 
information as a distance measure between Gaussian mixture models. 
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4 EXPERIMENT CONFIGURATION AND RESULTS 
Having explained the details of the clustering method, the distance measure for 

comparing two subsets prior to joining, and the format of the output from the clustering process, 
this chapter now presents the first set of experiments. For reference, Figure 4.1 outlines the entire 
process of methods and experiments used in this research. This chapter focuses upon experiments 
to support the chosen process as an appropriate method for grouping water utility customers. The 
motivation, procedure, results, and analysis for each experiment are presented together. 

Methods and Experiments

Preprocessing

Dimensional Reduction

Hierarchical Clustering

Import and CleanData
Normalize Consumption Values (per customer)
Embed into Phase Space
Form Gaussian Mixture Model for Each Customer

Weighted Variation of Information

Identify Need for More Consistent Clustering MethodExperiments 

Variation of Information
Dendrogram Representation

Conclusion

Novel Component Weighting

Repeat Experiments Compare with Previous Results

Cha
pte

r 2
Cha

pte
r 5

Cha
pte

r 3
Cha

pte
r 4

Cha
pte

r 6

 
Figure 4.1 Flow diagram of the methods and experiments in this research. 



68 
 

 

4.1 Evaluation of the Methods 
As mentioned in Section 3.1, unsupervised clustering operates without any data labels to 

confirm the results. Prior to releasing a software package to customers, the system is first tested 
for correct behavior, appropriate design, and consistent results. The proposed unsupervised 
clustering method has been evaluated using validation, verification, and consistency testing. 
While the two terms validation and verification are often confused with one another, they are not 
interchangeable and represent two distinct sets of testing. Adding to the confusion, the method 
used to determine if a clustering algorithm is performing well is commonly called “cluster 
validation.” 

1. Validation of software determines if the algorithm is designed correctly to meet 
the needs of the customer, or if a different method would have been a better 
choice. 
 

2. Verification determines if the algorithm or method works as the programmer 
intended, or if defects and programming mistakes exist within the software, 
causing erroneous results. 
 

3. Cluster validation determines if the clustering produces an appropriate separation 
of the data set for the defined problem. 

4.1.1 Validation  
Validation testing determines if the algorithm is designed correctly for the problem in 

question, or if a different method would have been a better choice. This is both an evaluation of 
the software as well as an assessment of the requirements and understanding of the problem 
domain. 

Validation of unsupervised clustering techniques presents additional challenges. Cluster 
validation analyzes the results of the clustering to determine if the techniques applied produce 
clusters that are appropriate for the problem. The two methods of cluster validation measures are 
internal and external. External validation requires labeled data and compares the actual answers 
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with the performance of the algorithm. Limited external validation on this clustering method is 
performed using synthetic customer data generated to mimic customers who should be clustered 
similar to each other and different from each other, and comparing the output to those synthetic 
data labels. This technique of test data sets is widely accepted as a means of software validation 
[93]–[95]. 

Internal validation attempts to measure performance of the algorithm by evaluating the 
structure of the clusters at the output. Most internal validation measures, such as Dunn’s index or 
the silhouette index, rely upon quantifying the compactness and separation of the clusters formed 
by the algorithm [96]. Compactness defines how close the members of a cluster are to one 
another. Separation defines the distance between members of different clusters. Liu et al., [96] 
compare eleven well-known internal cluster validation measures and discuss the limitations of 
these measurements. 

Applying cluster validation techniques to agglomerative hierarchical clustering presents 
computational obstacles. The agglomerative clustering does not define a specific number of 
clusters within the set, but rather grows each cluster through joining individual leaf nodes or 
smaller clusters. This method requires computing a validation measure at every join within the 
process. As an alternative to applying another validation measure, the agglomerative clustering 
using variation of information (VI) as the joining distance evaluates the clustering algorithm 
directly. That is, the VI is both the distance metric and the measure of cluster compactness and 
separation. This technique is built into the agglomerative process, and the dendrogram visually 
illustrates the cluster compactness and separation. 

4.1.2 Verification 
Verification determines if the algorithm or software functions as intended, or if 

programming mistakes introduce errors in the results. One extreme approach to verification is 
exhaustive testing, where every possible input is tested and the output evaluated [93]. This is the 
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most thorough tactic, but entirely unreasonable to implement in many systems concerned with 
testing real-world problems, as the range of inputs is unbounded. Instead, this algorithm is tested 
using a combination of extremal inputs, special-cases, and cleaned data from a known customer 
[93], providing a spectrum of test cases intended to represent the span of the input data. For this 
clustering method, extremal testing includes no-usage (all zero consumption records) and 
constant usage (indicative of a stuck meter or leak); special input cases include customers with 
limited historical data; and cleaned test data using a known residential customer. 

4.1.3 Consistency Testing 
Consistency is used here to describe the stability of a particular outcome when the same 

data are clustered multiple times by the method. For a clustering method to be valuable to 
utilities, the cluster populations must remain stable as long as the underlying behavior has no 
changes. This is determined by stability of individual customer cluster assignments with respect 
to other individuals and is discussed in the literature as cluster membership or migration of 
individuals within the data [61], [62], [97], [98]. 

4.2 Evaluation of Clustering Techniques Using Synthetic Data 
Despite the lack of labeled data, unsupervised clustering algorithms must still be tested. 

One approach is to create synthetic data with known labels as a substitute for identifying specific 
groups within the dataset. As the customer-grouping problem does not have specific labels 
without the reference to other customers, various data processing methods create synthetic 
customers who will be assigned “near” and “far” distances from their source data. Starting with 
actual customer data, we manipulate the individual hourly meter readings to represent customers 
that have similar behavior, different behavior, leaks, significant changes, and limited historical 
data.  
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4.2.1 Synthetic “Similar” Customers 
Shifting the entire time series forward or backward in time creates synthetic similar 

customers. This is equivalent to taking all the recorded meter data from a household and changing 
the time – instead of waking at 0745 and showering, the household now wakes at 0545. All 
behavior maintains the same volumes and temporal patterns. These customers will appear nearly 
the same when plotted in the reconstructed phase space, as the method extracts behavioral time 
patterns, not specific times of use. The VI distance of these synthetic similar customers will be 
very close to the original customer. Figure 4.2 illustrates the synthetic customer (orange) 
generated from the original customer data (blue) by shifting the time axis by approximately 30 
hours without changing any of the hourly flow values. 

 
Figure 4.2 Generating a synthetic "similar" customer through temporal shift 

The results of clustering synthetic similar customers show a short join distance between 
the donor customer and the synthetic generated customers. Figure 4.3 illustrates clustering with 
four synthetic customers, all generated from Customer 1 dataset. The labels indicate the type of 



72 
 

 

operation used to create the synthetic data. Customers 002 – 005 are actual customers from 
collected data. 

 
Figure 4.3 Clustering of four synthetic similar customers and five actual customers 

Descriptions of the individual customer data used for Figure 4.3 are provided in Table 
4-1. The customers used throughout these synthetic clustering experiments are different, with the 
exception of customer x001 being identical throughout and used as the donor data for all 
synthetic sets. 
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Table 4-1 Customer descriptions for synthetic similar customers example 

Customer Title Description 
x001 Original data set from one customer, used as donor data to 

create synthetic data sets 
x001 Forward Shift 1 Donor data has been shifted forward in time 
x001 Forward Shift 2 Donor data has been shifted forward in time by a different 

number of hours 
x001 Missing Data A section of the donor data has been eliminated and replaced 

with all zeros 
x001 Backward Shift Donor data has been shifted backward in time 

x002 Original data set from one customer 
x003 Original data set from one customer 
x004 Original data set from one customer 
x005 Original data set from one customer 

 

4.2.2 Synthetic “Different” Customers 
Creating dissimilar customers requires changing the temporal behavior patterns within 

the recorded meter data. The simplest method is to draw a random permutation from the existing 
hourly data records, as illustrated in Figure 4.4. Repeating this process multiple times creates a 
group of random customers with exactly the same recorded consumption volumes as the original 
customer, but no discernable schedules associated with the time of day or day of week. Within the 
reconstructed phase space, these random permutations have no obvious structure. In the 
hierarchical clustering, these three random permutations are expected to have small VI distances 
to each other, but large VI distances to the original customer who has daily or weekly behavioral 
patterns. 
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Figure 4.4 Generating a synthetic "different" customer through random permutation of hourly 

flow measurements 

As the name implies, synthetic different customers tend to be grouped randomly far from 
the donor data set. Figure 4.5 shows these results. One of the random permutation synthetic 
meters is grouped near to the donor meter, while the other two are grouped further away. These 
results are not surprising, as random permutations occasionally form similarities that resemble the 
source. 
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Figure 4.5 Clustering of three synthetic different customers generated through random 

permutations of the time series, with six actual customers 

Descriptions of the individual customer data used for Figure 4.5 are provided in Table 
4-2. The customers used throughout these synthetic clustering experiments are different, with the 
exception of customer x001 being identical throughout and used as the donor data for all 
synthetic sets. 
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Table 4-2 Customer descriptions for synthetic different customers example 

Customer Title Description 
x001 Original data set from one customer, used as donor data to 

create synthetic data sets 
x001 Random 1, 2, 3 Three different random permutations of the donor data 

x002 Original data set from one customer 
x003 Original data set from one customer 
x005 Original data set from one customer 
x006 Original data set from one customer 
x007 Original data set from one customer 

 

4.2.3 Synthetic “Leak” Customers 
In the water industry, a leak is any unintended loss of water from the pressurized 

distribution system [99]. While much of the focus in the water industry has been on distribution 
network leakage [70], [100]–[103], consumer-side (after the meter) leakage is important to the 
individual residents and commercial accounts, as they must pay for the lost water and the 
maintenance caused by water damage [100], [104]. Leaks may occur when a mechanical failure 
has occurred in a fixture or pipe, such as a leaky valve on a commode, a failed weld on a pipe 
joint, or a worn seal on a faucet. Human error may also appear as a leak from the perspective of 
measured flow – forgetting to turn off an irrigation system. Due to the low probability of 
detection, small volume leaks may run for weeks or months before repair, contributing to the total 
volume lost. 

To test the ability of the clustering algorithm to separate leaks from typical behaviors, 
synthetic leaks are created by choosing a duration the leak is present and a volume per hour of the 
recorded leak flow. At a random time, the leak begins, and the leak volume is added to every 
hourly data point for the duration, as illustrated in Figure 4.6 for a very short duration leak (blue) 
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compared to original customer data (gold). This assumes a fixed-volume leak, which is not 
entirely accurate. Future improvements to this algorithm should represent more realistic leaks: a 
small initial flow rate, increasing over time, sometimes progressing to a rupture with high flow 
rate [99]. 

 
Figure 4.6 Generating a synthetic "leak" customer by adding a fixed flow volume for a random 

duration 

The synthetic leak customers have been generated from Customer 001 by creating either 
a small volume of 0.75 gallons per hour for a duration of 500 consecutive hours or a medium 
volume of 2.3 gallons per hour for 200 consecutive hours. This does not imply leaks follow these 
volumes and durations, but provided a case for supporting future work to investigate these results. 
Figure 4.7 illustrates the output of the clustering algorithm for the leak customers as compared to 
six actual customers, including the donor data. The medium leak of 2.3 gallons has been grouped 
much further from the original customer than the small leak. 
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Figure 4.7 Clustering of two customers with synthetic leak events and six actual customers 

Descriptions of the individual customer data used for Figure 4.7 are provided in Table 
4-3. The customers used throughout these synthetic clustering experiments are different, with the 
exception of customer x001 being identical throughout and used as the donor data for all 
synthetic sets. 
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Table 4-3 Customer descriptions for synthetic leak events example 

Customer Title Description 
x001 Original data set from one customer, used as donor data to 

create synthetic data sets 
x001 Medium Leak A leak of 2.3 gallons per hour has been applied to 200 

consecutive hours with a random start time 
x001 Small Leak A leak of 0.75 gallons per hour has been applied to 500 

consecutive hours with a random start time 
x002 Original data set from one customer 
x003 Original data set from one customer 
x005 Original data set from one customer 
x006 Original data set from one customer 
x007 Original data set from one customer 

 

4.2.4 Extremal Testing  
Extremal testing is performed when the test data are selected to explore the boundaries of 

the input data space, anticipating the test to exercise boundaries of the output space [93]. In the 
case of this research, extremal testing occurs when tests are performed on synthetic data with no 
consumption, continuous consumption, and random consumption values. These extreme cases are 
designed to be outliers within the data and should have appropriate clustering distances from the 
other data. Experiments using fixed consumption values indicate the method performs poorly as it 
currently is designed. 

During the first step of modelling for every customer, the Gaussian mixture models fail to 
converge within the phase space if all recorded volumes are identical. After manually altering the 
GMM to have a small nonzero volume, the next step in clustering also failed to converge, and this 
failure propagated throughout the experiment. Automatic handling of extremal cases – customers 
with no consumption or constant volume consumption – requires implementation of a new 
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preprocessing step or a modification to this method to accommodate the near-zero-volume model 
components. 

4.3 Consistency Testing 
The method of using Gaussian mixture models to represent real-world data sets 

introduces an element of randomness during the generation of the models. This randomness may 
result in no two GMMs created on the same data set being identical. Since the input to the 
clustering mechanism is not identical for each trial, it is important to test the procedure multiple 
times to determine if the results are widely variant or inconsistent. Common accepted practice 
demands testing software for consistency [93], [95].  

If the same raw time series data is provided, the output GMMs ought to be comparable. 
Further, the clustering of similar GMM inputs ought to produce similar clustering results. The 
underlying relationships in the GMMs and clustering results will then generate dendrograms with 
structure and distances that are consistent from trial to trial. Figure 4.8 clarifies the process of 
testing clustering consistency. The illustration has only three customers for simplicity, but the 
experiments include clustering with every customer.  
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Figure 4.8 Experiment configuration for testing consistency of the clustering method 

 

First, twelve different GMM trials are performed for each customer (blue customer, green 
customer, red customer, etc.). Then, a random GMM is chosen from each customer’s set of trials, 
and those are clustered to form a dendrogram. The dendrograms are then compared to each other. 
If the experiment process is consistent, the dendrograms should be constructed in a similar, but 
not exact, manner. Customers with short variation of information distances at the time of join 
should maintain a short distance through all trials of this experiment, while those with large VI 
distances when joined to the other customers should maintain the large distance as well. 

4.3.1 Interpretation of Consistency Dendrogram Figures 
To display the results of consistency testing in a meaningful and clear manner, several 

dendrograms are grouped horizontally, as shown in Figure 4.9. Each dendrogram is one result of 
a clustering experiment trial. The horizontal grouping allows comparison of results between 
several trials. The Gaussian mixture models representing each customer are different for each 
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trial, contributing to the variation in results. Individual trials are labeled with the title “Run #” and 
a number related to the timestamp of the experiment for recordkeeping purposes. Two 
dendrograms with the same Run # title are results from the same experiment. 

Customer labels are consistent through all trials of an experiment and through all 
dendrograms on the figure. However, other experiments may label a different meter Customer 
001, based on the order the customer models were loaded into the program for that experiment. 
The title of the figure indicates the experiment displayed, and a different title implies the 
customer labels may be different meters, unless noted otherwise. 
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Figure 4.9 Sample results diagram from consistency experiments 

As these graphics present a great deal of data, they can be confusing to interpret. Most of 
the labels on the vertical axis for each dendrogram are hidden to reduce visual clutter, and 
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specific labels are colored for emphasis in the comparison. Some experiments show multiple 
figures with identical collections of trial dendrograms, except for the highlighted customers. This 
approach shows all the results without being visually overwhelming. 

Figure 4.10 shows one way to interpret these figures. The red path identifies the same 
customer across all dendrograms and illustrates the volatility of the position for Customer 048 in 
the clusterings. The two black bars indicate the uppermost and lowermost positions among the 
clusterings, with the span between these two bars a representation of the volatility. If this 
experiment were perfectly repeatable, the volatility would be very small, the black bars would be 
nearly touching, and the highlighted customer would have exactly the same location in every 
clustering. 

VOLATILITY OF CUSTOMER 048

Clustering Example

 
Figure 4.10 Illustration of the volatility of one customer throughout many experimental trials 
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In general, more volatility is less useful to a utility implementing this system. The utility 
wishes to have customers grouped consistently each time the clustering is run. A highly volatile 
result indicates the models being generated for each trial are not similar. The definition of a 
robust measurement for volatility is out of scope for this dissertation, but this remains a useful 
representation to evaluate the consistency of test results and to compare the experimental methods 
presented in this work. 

4.3.2 Results of Hierarchical Clustering with VI Distance 
This experiment compares multiple GMMs created from the same 99 customers. Each 

trial of the experiment uses a new set of GMMs, and creates unique cluster models at each stage 
of the clustering. The purpose of the experiment is to demonstrate the clustering method can be 
repeated and the output will be similar after each clustering. In a real-world application, the utility 
will need to run the clustering at intervals to group the customers. If the groups are very volatile, 
the method is not useful. In this sense, volatility describes the cluster group membership changing 
drastically each time the clustering runs, distances between one customer and his/her peers 
fluctuating wildly, or a customer moving from the large group of “typical” customers into the 
smaller group of “unusual” customers. 

Over the next several pages, results of the consistency testing using traditional variation 
of information distance are presented. In each figure, several dendrograms are placed 
horizontally, each with a heading label Run # xxxxxx. These numbers indicate the time stamp 
that particular clustering experiment occurred, for documentation and tracking purposes. The 
dendrograms all include the same original customers, but not the same Gaussian mixture models 
for each customer, resulting in the variations seen. Generic labels (Customer 098, etc.) have 
replaced meter serial numbers, to preserve the anonymity of the end users and the utility. 
Customer labels are consistent throughout every experiment in the figure. Therefore, “Customer 
098” always describes the same meter, regardless of the individual subplot dendrogram in 
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question, and this entire set of figures maintains consistent labels. Figure 4.11 shows the full set 
of customers and all the labels. 

 
Figure 4.11 Consistency experiment results with all labels visible 
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Clearly, the diagrams become difficult to read with every label visible. Separate figures 
have been created from Figure 4.11 to improve legibility, with colorized labels focusing upon a 
smaller group of customers and hiding the remaining labels. Care has been taken to present all the 
customers in this manner, with no exclusions. This produces a set of 20 diagrams, shown over the 
next several pages (Figure 4.12 through Figure 4.31). Presenting the data in this manner allows 
visual identification of those customers with generally consistent results and those customers with 
clustering placements that vary wildly between the different experiments. The figure title 
identifies the customer labels highlighted in each illustration. Some experimental trials found the 
model of a particular customer never to intersect with the others, and in these cases, the customer 
label is not visible on the dendrogram for that trial as the distance to the rest of the meters is 
infinite. 
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Figure 4.12 Consistency experiment results 1 of 20 
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Figure 4.13 Consistency experiment results 2 of 20 
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Figure 4.14 Consistency experiment results 3 of 20 



90 
 

 

 
Figure 4.15 Consistency experiment results 4 of 20 
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Figure 4.16 Consistency experiment results 5 of 20 
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Figure 4.17 Consistency experiment results 6 of 20 
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Figure 4.18 Consistency experiment results 7 of 20 
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Figure 4.19 Consistency experiment results 8 of 20 



95 
 

 

 
Figure 4.20 Consistency experiment results 9 of 20 
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Figure 4.21 Consistency experiment results 10 of 20 
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Figure 4.22 Consistency experiment results 11 of 20 
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Figure 4.23 Consistency experiment results 12 of 20 
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Figure 4.24 Consistency experiment results 13 of 20 



100 
 

 

 
Figure 4.25 Consistency experiment results 14 of 20 
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Figure 4.26 Consistency experiment results 15 of 20 
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Figure 4.27 Consistency experiment results 16 of 20 



103 
 

 

 
Figure 4.28 Consistency experiment results 17 of 20 
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Figure 4.29 Consistency experiment results 18 of 20 
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Figure 4.30 Consistency experiment results 19 of 20 
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Figure 4.31 Consistency experiment results 20 of 20 
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4.3.3 Discussion of Consistency Experiment Results 
As shown in Section 4.3.3, the clustering of many customers occurs similarly regardless 

of the trial. Figure 4.32 illustrates several of the most consistently placed customers in the 
dendrogram. These customers have lower volatility when comparing multiple trials of the same 
experiment. The utility can expect these customers to be classified in the same manner most of 
the time. 
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Figure 4.32 Consistency experiment results - consistent customers 
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A subset of customers, however, are not clustered consistently over the multiple trials. 
Figure 4.33 highlights those customers with the most inconsistent clustering results. These 
customers exhibit high volatility in their classification. As the utility runs the clustering algorithm 
multiple times, there is no expectation these customers will remain in the same groups. This 
volatility will increase the burden on the utility to understand the behaviors of these customers in-
depth. 
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Figure 4.33 Consistency experiment results - inconsistent customers 
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This inconsistency will lead to certain customers being grouped differently depending on 
the particular run of the clustering experiment. Inconsistency is an undesirable result for the 
utility and costs additional time or money to investigate. Rather than using the traditional VI 
distance to cluster customer models, a novel component-weighting scheme has been developed to 
improve the consistency of this clustering process. The next chapter describes the foundation and 
mathematical theory of the weighted VI in detail and presents the results of consistency 
experiments on the same data using the new distance measure. 
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5 NOVEL DISTANCE MEASURE BASED ON WEIGHTED GAUSSIAN MIXTURE MODEL COMPONENTS 
As the previous chapter illustrated, the results from the consistency testing were mixed. 

Some customers had consistent behavior in the clustering between multiple trials, while others 
showed a large volatility in clustering behavior. To combat this variation in results, this chapter 
presents a novel component-weighting scheme, discounting behaviors with large variation and 
preferring behaviors with highly repeatable patterns. For reference, Figure 5.1 outlines the entire 
process of methods and experiments used in this research. This chapter defines a weighted 
variation of information (wVI) distance for clustering probabilistic models as an improvement 
over the traditional variation of information (VI) distance used in the previous chapter. The 
results using the wVI distance are far more consistent across many trials for every meter in the 
data set. 
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Figure 5.1 Flow diagram of the methods and experiments in this research 

The experiments in Chapter 4 apply equal weight to every component within a Gaussian 
Mixture Model (GMM). When combining distributions, uniform weighting is not necessarily the 
most accurate and repeatable choice. Expanding upon work combining probabilistic forecasts in 
[105]–[107], a similar method is developed to weight the individual components of the Gaussian 
Mixture Models. For clarity, the weighting method is described in one dimension first, and then 
generalized to multiple dimensions for application to this research. 

5.1 Accuracy and Precision of a Gaussian Distribution 
The terms accuracy and precision are often treated interchangeably, but they describe two 

different measurements [108]. The slingshot and target shown in Figure 5.2 shows the 



114 
 

 

relationship between a Gaussian distribution fit along one dimension and the accompanying 
strikes on the target. The grouping of strikes shows a high accuracy, with the grouping centered 
on the x-ring (or bullseye) within the target, but a low precision, with a wide cluster of strikes. 

 
Figure 5.2 Comparing accuracy and precision of strikes to a Gaussian distribution fit on the 

target 

With two different groupings of strikes, shown in Figure 5.3, the differences in accuracy 
and precision are apparent. The left grouping shows a tight cluster with a high precision but low 
accuracy. The right grouping shows a wide cluster with a high accuracy but low precision. When 
evaluating these groupings, the tight cluster shows a more repeatable performance, even though 
the accuracy is not centered on the target. While the grouping on the right is more accurate, 
centered on the x-ring of the target, any particular strike is less likely to provide useful 
information about the rest of the strikes in the cluster, or the ability of the individual to perform 
consistently [108]. 
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Figure 5.3 Two different Gaussian distributions fit to strikes on targets 

5.2 Gaussian Mixture Models of Water Consumption Patterns 
A two-component Gaussian mixture model of a daily measured flow pattern is shown in 

Figure 5.4. The model is fit to weekday flow measurements from a residential water meter. It is 
representative of many household daily flow measurement patterns with a narrow morning 
“before work” peak indicative of a short time between the alarm clock and departure. The wide 
afternoon/evening “after work” peak indicates a more flexible afternoon/evening water 
consumption pattern based on something other than a fixed deadline such as the beginning of the 
workday. Other patterns exist, but this pattern and variations of it are pervasive in residential data 
and are useful to discuss the limitations of using traditional variation of information as a 
clustering distance. 
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Figure 5.4 Gaussian mixture model fit to residential weekday measured flow 

Patterns like the one in Figure 5.4 are seen throughout the data. Figure 5.5 shows three 
such customers represented by three different Gaussian mixture models, each with two Gaussian 
components. For the purposes of this research, the customers A and B are the most similar, 
having a narrow peak in the morning indicative of a highly repeatable behavior. The wide peak in 
the afternoon shows significant total consumption, but lacks the repeatability of a habitual 
behavior, creating the large standard deviation shown in the mixture models. Comparing 
customers A and C, the large peak in the afternoon is very similar, but the morning peaks appear 
at different times. This can skew the traditional variation of information (VI) distance calculation 
in favor of grouping AC prior to grouping AB. 
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Figure 5.5 Three customers represented as 2-component GMMs 

To illustrate the different clustering results, Figure 5.6 shows each possible clustering 
with the traditional VI area shaded in red. While not immediately obvious, the mathematical 
value of VI for the third clustering, AC, is the smallest of the three, and would be chosen for a 
traditional VI based clustering. A distribution with a wide standard deviation shows less precision 
of the mean time value represented by the model component. Thus, the standard deviation of the 
distribution for each component brings important information regarding the precision of the 
measurements to the weighting of a multi-component model. 
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Figure 5.6 Three possible clusterings of the customers A, B, and C, with shaded area indicating 

variation of information 

5.3 Component Weighting of the Gaussian Mixture Models 
Adding component weighting to the VI computation provides the desired results. Each 

component in the mixture model has its own standard deviation, as illustrated in Figure 5.7. These 
standard deviations are used to compute the weights for every component in each customer GMM 
[109]. 



119 
 

 

Weighted Variation of Information
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Figure 5.7 Component standard deviations used for computation of weighted variation of 

information 

The relationship between the weights and the standard deviation of components is 

 11

1 2

1
1 1AA

A A

w 
 




 . (5.1) 

Then, these weights are applied to the different entropies of the components, and the weighted 
component entropies summed to determine the overall entropy of the customer 

      1 1 2 2A AwH A H A w H A w   . (5.2) 

After the remaining weights and entropies are computed for every customer, the weighted mutual 
information and weighted variation of information between two customers are computed using 
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and  

        , 2 ,wVI A B wH A wH B wMI A B      .  (5.4) 

In the case illustrated in Figure 5.7, the components of the GMM are cleanly separated, 
and the products of  1 2 1 2, A BMI A B w w  and  2 1 2 1, A BMI A B w w  are small or zero, but this is 
not always the case when comparing two GMMs 

5.4 Weighting of Models with Varying Number of Components 
The different customers need not have the same number of components in the GMM, 

although the same dimension is required for comparison. Figure 5.8 demonstrates comparing 
customers with different numbers of components and includes the computed VI and wVI 
measurements. 

Gaussian Mixture Models with Varying Number of  Components
Gaussian Mixture Models with Varying Number of  Components  

Figure 5.8 Comparing the VI and weighted VI of customers with varying number of components 
in the GMM 
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This example has been reduced in dimension for clarity and ease of visual illustration, but 
the procedure can be extrapolated into an n-dimensional space with any number of components to 
the GMM. For the current research using reconstructed phase space of water flow measurements, 
the arithmetic mean of standard deviation in the three axial directions is used to create an average 
standard deviation for the component, 

 1 1 1
1 3

x y z
avg

     .  (5.5) 

These could be weighted individually if one dimension is more important than others in the 
underlying model. All dimensions are equally weighted in this work. Next, compute the weight 
relative to the standard deviations of every component within the model:  

 1
1

1 2 3 4

1
1 1 1 1

avg

avg avg avg avg

w 
   


  

. (5.6) 

Necessarily, the sum of all weights of all components of a model is unity, 
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w


 .  (5.7) 

Finally, apply these weights when computing the entropy, MI, and VI distance between two 
cluster models (cluster A and cluster B) 

            1 1 2 2 3 3 4 4
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mutual information 
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and variation of information distance 
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           (5.11) 

between two cluster models (cluster A and cluster B). Weight 1Aw  represents the weight of 
mixture component 1 for cluster A. This weighting allows the clustering algorithm to emphasize 
smaller cluster components, those with a tighter standard deviation and reduces emphasis of the 
components with a large average standard deviation. 

5.5 Comparing Weighted Variation of Information with the Traditional Variation of 
Information 

In some circumstances, the weighted variation of information will be equivalent to the 
traditional variation of information. For Gaussian mixture models comprised of identically shaped 
components, the weights will be equal. Recall the definition of wVI between two cluster models 
A and B, 

        
1 1 1 1

, 2 , ,n m m n
i Ai k Bk i k Ai Bk

i k k i
wVI A B H A w H B w MI A B w w

   
           (5.12) 

with the weight of any component of A, 



123 
 

 

 
1

1
,1AiAi n

i Ai

w 


  (5.13) 

and the weight of any component of B, 
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In cases where the standard deviations of all components within the cluster (A or B) are equal, the 
weights of each component within the cluster are also equal. That is, 
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With equal component weights,  ,wVI A B  is equal to  ,VI A B , 
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The models with components varying minimally in standard deviation (in three 
dimensions this is shape and volume) will have nearly identical, but not equal weights. When a 
model has considerable variation in the standard deviations (shape, volume), the component 
weights will be substantially different. This is reflected in the computation of individual weights 
by Equations (5.13) and (5.14). 
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The wVI will represent models with varying components differently than the traditional 
VI measurement. The emphasis on narrower distributions (compact volumes in three 
dimensions), results in a smaller distance between customers that match on these highly repetitive 
behaviors. 

5.6 Consistency Testing Using Weighted Variation of Information 
The consistency tests of Section 4.3 have been repeated using the weighted variation of 

information (wVI) distance measure. This experiment compares multiple Gaussian mixture 
models from the same 99 customers, and each has the same anonymized label number as it had in 
results presented in Sections 4.3.2 and 4.3.3. The colorized groupings presented in each of the 20 
output figures match those in the previous results as well, to aid comparisons between the 
experimental results. 
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Figure 5.9 Consistency experiment results using wVI distance 1 of 20 
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Figure 5.10 Consistency experiment results using wVI distance 2 of 20 
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Figure 5.11 Consistency experiment results using wVI distance 3 of 20 
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Figure 5.12 Consistency experiment results using wVI distance 4 of 20 
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Figure 5.13 Consistency experiment results using wVI distance 5 of 20 
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Figure 5.14 Consistency experiment results using wVI distance 6 of 20 
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Figure 5.15 Consistency experiment results using wVI distance 7 of 20 
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Figure 5.16 Consistency experiment results using wVI distance 8 of 20 
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Figure 5.17 Consistency experiment results using wVI distance 9 of 20 
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Figure 5.18 Consistency experiment results using wVI distance 10 of 20 



135 
 

 

 
Figure 5.19 Consistency experiment results using wVI distance 11 of 20 
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Figure 5.20 Consistency experiment results using wVI distance 12 of 20 
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Figure 5.21 Consistency experiment results using wVI distance 13 of 20 
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Figure 5.22 Consistency experiment results using wVI distance 14 of 20 
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Figure 5.23 Consistency experiment results using wVI distance 15 of 20 
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Figure 5.24 Consistency experiment results using wVI distance 16 of 20 
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Figure 5.25 Consistency experiment results using wVI distance 17 of 20 
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Figure 5.26 Consistency experiment results using wVI distance 18 of 20 
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Figure 5.27 Consistency experiment results using wVI distance 19 of 20 
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Figure 5.28 Consistency experiment results using wVI distance 20 of 20 
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5.7 Discussion of Consistency Experiment Results with Weighted Variation of 
Information 

The primary motivation for developing the new weighting method is to improve the 
consistency of clustering results over multiple trials of the experiment. The customers who 
showed somewhat consistent results in Figure 4.32 are presented again in Figure 5.29, and show 
even less volatility between clustering trials. Using the wVI measurement produces results that 
are much less volatile across all trials and all customers. 



146 
 

 

 
Figure 5.29 Consistency experiment results using wVI distance - consistent customers 
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Recall the results in Section 4.3.3 showed a group of customers with highly volatile 
placements between multiple trials. Those same customers are highlighted in Figure 5.30, using 
the clustering results from the wVI distance method. As Figure 5.30 shows clearly, using the wVI 
distance measure for clustering the GMMs reduces the volatility of all individual customers 
across many trials. This improves the consistency seen when running the clustering multiple 
times with the same data, and reduces the volatility caused by random differences in the Gaussian 
mixture models. For a practical application, the repeatability of results is critical to performance. 
A utility must be confident the same data produces nearly the same clusters, regardless of the 
randomness within the models. 
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Figure 5.30 Consistency experiment results using wVI distance - inconsistent customers 
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While the wVI distance measure greatly reduces the volatility of all customers, some still 
show inconsistencies. Figure 5.31 shows the customers with the most volatility (by inspection) 
using the wVI distance measure. The customers in this set remain within the large grouping of 
customers in the lower 80% of the dendrogram, regardless of the specific order they have been 
clustered. This indicates the volatility is not as severe as those customers moving from “far 
distance” to “near distance,” seen in Figure 4.33 using the traditional VI distance measure. 
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Figure 5.31 Consistency experiment results using wVI distance - highest volatility using wVI 
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Those customers with the furthest distances were repeatedly clustered in the same 
manner, with approximately the same distance relative to the rest. Figure 5.32 highlights the six 
customers on the top end of the dendrograms. Note the order of these does not change between all 
ten experimental trials, with the exception of customer 003 not appearing in Run # 212104 due to 
an infinite distance from the rest. 
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Figure 5.32 Consistency experiment results using wVI distance - largest distance from main 

cluster using wVI 



153 
 

 

This chapter has introduced a novel component-weighting scheme used to compute the 
weighted variation of information distance between two Gaussian mixture models. The new 
distance shows consistent clustering results when run on the same original data multiple times, 
using new Gaussian mixture models for each trial. Even the most volatile customers and those 
customers with the furthest distance from the remainder of the data remained more consistent 
than when using a traditional variation of information distance measure. The repeatability of these 
experiments makes the weighted variation of information distance more useful in a practical 
application when clustering utility customers, reducing the number of customers that “move” 
between clusters and improving the confidence in identifying customers with a great distance 
from the remainder of the data. 
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6 CONCLUSION 
This dissertation addresses the need to divide a population of utility customers into 

groups based on their similarities and differences using only the measured flow data collected by 
water meters. The method of hierarchical agglomerative clustering of these utility customers 
based on an information theoretic distance measure is explored and tested using both the 
traditional variation of information and the novel weighted variation of information distance 
measures. Results indicate more consistent clustering occurs while using the weighted variation 
of information distance measure. 

6.1 Summary of Methods 
The work described by this dissertation is outlined in Figure 6.1. As data is collected 

from water meters, the measurements of flow in gallons are recorded at hourly intervals. The 
records are stored as time series entries in the Badger Meter, Inc. BEACON® Advanced Metering 
Analytics system. Chapter 1 provides context of the water meter domain and details about the 
specific equipment used for collecting the data. Prior to any clustering, the data requires 
preprocessing to eliminate anomalies and errors that will invalidate the clustering results, as 
described in Section 2.3. The data also are normalized per customer by the non-zero median 
value, leaving only the behavioral patterns and relative magnitude of flow. Finally, a triangular 
filter is applied to smooth out the human behavioral jitter and systematic time drift within the 
sensor network. 

Upon completion of the preprocessing step, dimensional reduction is performed in 
Section 2.4. Within this procedure, the quantity of data is reduced from individual records at each 
time interval to a Gaussian mixture model of the data within a reconstructed phase space with 
time lags of 0, 24, and 168 hours. The purpose of the reconstructed phase space is to generate 
areas within the space related to daily and weekly habitual water consumption behaviors. The 
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Gaussian mixture models reduce the space required to store a representation of a single meter, 
and allow the direct comparison of multiple meters with different quantities of historical data. 

Methods and Experiments

Preprocessing

Dimensional Reduction

Hierarchical Clustering

Import and CleanData
Normalize Consumption Values (per customer)
Embed into Phase Space
Form Gaussian Mixture Model for Each Customer

Weighted Variation of Information

Identify Need for More Consistent Clustering MethodExperiments 

Variation of Information
Dendrogram Representation

Conclusion

Novel Component Weighting

Repeat Experiments Compare with Previous Results

 
Figure 6.1 Flow diagram of the methods and experiments in this research 

Following the dimensional reduction and preprocessing, the hierarchical clustering 
process can begin. Chapter 3 describes the clustering process in detail. Specific unsupervised 
clustering techniques are discussed. Distance measures are defined and compared, with 
supporting examples to illustrate advantages and shortcomings. Finally, the implementation of 
this method using MATLAB® is explained in Section 3.4, with specific functions used for each 
stage of the process. 

Experimental procedures for testing the performance of this method are examined in 
Chapters 4 and 5. Chapter 4 explores the basic method, discussing whether the clustering 
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approach is appropriate for the water meter domain, and provides initial results from the 
hierarchical clustering based on variation of information distance measure. The results show 
some volatility in clustering outcomes between subsequent trials of the same data set, illustrating 
the need for a new distance measure. Chapter 5 introduces the weighted variation of information 
distance, and defines the weighting of individual Gaussian components within a Gaussian mixture 
model. The experiments discussed in Chapter 5 show the greatly improved consistency between 
experimental trials, supporting the efficacy of this new weighting scheme. 

6.2 Future Work 
This work can be expanded through enhancements to pre- and post-processing methods, 

exploring the reconstructed phase space further, identification of evolutionary customer behavior, 
and practical improvements for commercial application. Additionally, the weighted variation of 
information distance measure can be generalized further for more flexibility in applications. 

6.2.1 Handling of Missing Reads and Gaps in the Time Series 
 The data cleaning implemented in this work extracts the longest consecutive set of 

measurements with no gaps, disaggregated records, or negative values. This brute-force approach 
simply excludes data that will cause the clustering method to crash. A more robust method would 
identify the anomalies and modify the clustering method to accommodate them. The customer 
model currently stores only a single time series as input to generate the model. A different 
approach could accommodate multiple, nonconsecutive time series to accommodate large gaps in 
the recorded data. This would involve making several initial Gaussian mixture models for a 
particular customer, one for each time series segment. The collection of sub-models would need 
to be combined into one master-model used for clustering amongst all customers, weighting the 
contribution to the master by the amount of data used to create that particular sub-model. 
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In another implementation, the preprocessing of large gaps in the data may include 
disaggregating the sum of consumption over the missing time. The system would determine the 
expected value during the missing periods, based on previously collected data. For instance, the 
weekday expected value pattern composed of two Gaussian distributions illustrated in Figure 2.13 
could be used as the function to scale the known missing volume. This pattern is unique to every 
customer and day types (day of week, weekday, weekend, or other schedules). Once the scaled 
expected values are recreated, the disaggregated data can be entered into the former gap in the 
time series. This will not provide additional insight in the model (creating a model from itself is 
moot) but will allow the data system to handle a single continuous time series rather than several 
smaller time series. The advantage will be simplified implementation, data storage, and handling 
of the data by the program compared to the previous suggestion of storing many time series 
individually for one meter. 

6.2.2 Detecting and Correcting Negative Flow Measurements 
Any data showing negative values has been omitted from this work. However, water 

meter readings sometimes indicate negative flow. True reverse flow occurs when water passes 
through a meter in the reverse direction, causing a mechanical meter to spin backwards or an 
electronic meter to detect negative flow. Erroneous reverse flow is caused by sensor noise, 
mechanical jitter, or communication errors. True reverse flow measurements are considered alarm 
conditions by many utilities as a backflow event may introduce contaminants into the water 
supply [69], [110]. Due to this alarm condition, true reverse flow episodes must be maintained in 
the data for alerting the system managers and customers with a model indicating reverse flow 
need further investigation. Erroneous measurements are a nuisance, and a pre-processing step to 
filter these from the data models is desirable, such as replacing the negative flow with imputed 
values suggested by [47]. In some cases, the sensor error or mechanical jitter is obvious – a very 
large magnitude negative flow followed by a very large magnitude positive flow as the next 



158 
 

 

reading does not have this error. The data cleaning procedure must identify the error type and 
apply corrective action if necessary before continuing to model creation. Care must be taken to 
preserve the underlying actual usage obscured by the much larger magnitude of the jitter. 

6.2.3 Describing Clusters by Typical Flow Profiles 
Post-processing techniques can improve the usefulness of the clustering method. Certain 

clusters with high distances from the main group can be evaluated further to identify underlying 
undesirable behavior such as a leak or abnormally heavy usage. The post-processing can 
implement a second stage to generate a typical flow profile similar to [42] based on the behavior 
of the members of a particular cluster. Utility experts then can review this flow profile, labeling 
that group of customers based on their behavior. One example of this labeling process is 
identification of customers with irrigation patterns. A utility expert can identify an irrigation 
pattern by inspection due to the large irrigation flow volume occurring during specific months of 
the year and times of the day when irrigation is permitted by the municipality [3], [17], [49], 
[111]. Customers with irrigation patterns are potentially targets for conservation campaigns, as 
drought conditions often influence the local rules governing irrigation behavior. 

6.2.4 Individual Meter Migration Between Clusters 
A particular meter will not have the same usage pattern forever due to underlying 

changes in the behavior of the occupants [43], [46], [112]. In a residential application, the 
occupants may sell the home. This can cause weeks or months of abnormal usage and then a new 
pattern once the new occupants settle into the house. An owner may install a water feature, 
swimming pool, or change their landscaping, creating large water flow events where none had 
occurred previously. A family may change habits over the years, as children grow into teenagers 
and bathing activity changes. Then, as those same teenagers become adults, the habits change 
again as the occupancy decreases. The research presented here separated volume from behavior 
through normalization of the data, but other research could include non-normalized data. 



159 
 

 

During any of these common events, the model created for a particular meter will change. 
The grouping of customers will reflect these behaviors as a meter migrates from one cluster to a 
different. A separate system could monitor wVI distances compared to other meters and identify 
the migratory behaviors of individuals over time. This may be a slow migration such as children 
growing and changing the bathing habits gradually or an abrupt migration such as an occupancy 
change. The migratory patterns may follow a meta-model within the utility, for example, 
occupancy changes may have a pattern of behavior that is identifiable and repeats throughout 
many neighborhoods and properties. 

Further migratory patterns may show the recorded flow deviating from the meter’s 
expected model. In some cases, the meter may exhibit a leak pattern in addition to the normal 
consumption pattern [58], [113]. This offset for a leak may be masked by other usage and not 
easily identified as a leak through traditional detection methods of continuous flow, especially 
when the leak is smaller than the lowest resolution of the meter. A meter migrating to a leak 
pattern should trigger an alert for additional action to notify the owner and correct the problem. 

6.2.5 Adding a New Model to the Existing Clustering 
Two known shortcomings of this work are the unknown amount of data required to create 

a viable model and the lack of an easy method to add a new customer without re-clustering the 
entire data set. The individual meters in this work are treated as if there are no changes in 
ownership or commercial usage, a naïve assumption. A change in residential ownership may 
include new family habits and behaviors [49], [111]. Commercial usage changes may indicate a 
new owner, or a change in the business processes that occur within the location. One example is a 
gas station that expands to include a car wash facility. This new model must be generated from a 
reasonable period of data collection and then added to the existing dendrogram in a suitable 
position. 
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The amount of data required to make a suitable model should be identifiable through 
robust experimentation. Supplementing the existing data set with synthetic customers having 
progressively shorter time series durations will create many customers with expected distances 
near to the donor customer. Clustering on a large group of these will identify the minimum time 
series duration required for a representative model based on the synthetic customers that no 
longer have a close distance to the donor. The experiment should be repeated on a large scale, 
across all types of commercial and residential meters, as the threshold for required time series 
duration may be affected by end use and meter size or resolution. 

Upon creating a new model for insertion to the data space, the current method requires 
clustering of the entire data set. Exploiting the metric properties of the variation of information 
[77], a new mathematical method can be implemented to identify the distance to each of the 
original customer models. Then, using the triangle inequality [114] or ultra-metric strategy [115], 
a suitable location for insertion can be computed. This strategy will allow the insertion of some 
customers into the existing dendrogram without repeating the entire clustering process, but good 
practice suggests periodically refreshing the entire clustering. 

6.2.6 Improvements to the Weighted Variation of Information Distance 
The weighted variation of information measure presented here may also be improved by 

future work. The method currently assumes each dimension within a component of the Gaussian 
mixture model is equally important, but additional research may determine specific weights based 
on the orientation of the Gaussian component within the phase space relative to the dimensional 
axes. Higher order models may have more complex weighting schemes defined by combinations 
of dimensions. This preference for one dimension or a weighted combination of dimensions may 
be related to work such as principal component analysis within a reconstructed phase space [57], 
[116]. 
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6.2.7 Hierarchical Clustering Evaluation Measure for Unsupervised Applications 
The experiments presented in this work illustrate the need for a new evaluation measure 

specifically used for comparing hierarchical clustering when labeled data is unavailable. The 
existing evaluation techniques are unsuitable for this application due to limitations on data or the 
required flexibility of number of clusters due to the commercial application. 

Measures such as the Rand [86], adjusted Rand (ARI) [117], or hierarchy agreement 
indices (HAI) [118], [119] require labeled data or a ground truth clustering for comparison. In 
absence of these labels, the measurements only determine the agreements between two 
clusterings, not including any ability to scale the disagreement based on the distance between 
where a customer was assigned in one clustering versus the other. The lack of labels presents a 
further problem in that expert labels for water consumption behaviors have not been defined by 
the field. Individual fixture signatures have been explored [43]–[46], but nothing has been 
defined for assigning behaviors at the meter level. These population-based measures, (Rand, ARI, 
HAI) could possibly be used in conjunction with some form of cross-validation. This approach 
would require holding each clustering trial as the ground truth, and comparing all other trials to it. 
Repeating this for every trial to be the ground truth provides a set of pairwise indices that can be 
combined in some manner to provide a measure describing the overall similarity across many 
trials of the same experiment. 

Other popular evaluation measures such as silhouettes [73] or Dunn’s index [120] require 
a fixed number of clusters to be defined. The hierarchical clustering process was specifically 
chosen to accommodate varying numbers of clusters related to constraints outside the data itself – 
financial, human, and material resources of the commercial application. While these measures 
will identify compact and separated clusters, they will not provide assurance that the clustering 
procedure will result in similar clusters forming among multiple trials. Further, the commercial 
application is often more concerned with a solution that can be replicated and works better than 
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the current approach, rather than being focused upon the exact optimal solution at a cost of 
resources or time. These measures of separation and compactness might be applied at every step 
of the linkage in the hierarchy, but may clutter the results with more information than can easily 
be interpreted.  

Another possible solution to the evaluation is adapting the variation of information to 
compare the linkages themselves. This method requires defining a suitable calculation of entropy 
based on the linkage itself, combining the individual joins and the distances thereof. Care must be 
taken when defining this entropy such that those few individuals with great distances from the 
others do not skew the resulting measurement. 

Finally, some measure might be created to indicate the individual volatility for each 
customer within the set of trials. This necessarily requires accounting for the distance at time of 
join and some measure of the average join location. Perhaps the measure for each customer 
multiplies the difference between the maximum and minimum join positions with the wVI of the 
average join position. Some representative value computed from this set of customer measures 
then defines the overall performance of the clustering technique. 

6.3 Discussion of Contributions 
This research contributes a method for processing water meter time series data as well as 

a novel approach to weighing components within a model. The method of unsupervised 
hierarchical clustering using information-theoretic distance measures is flexible enough to 
accommodate different numbers of clusters as the individual application requires, and needs no 
training set of labeled customers to determine which individuals have similar behavior to each 
other. These advantages make the method appropriate for implementation in water utilities where 
resources of time, finances, equipment, or staff are limited. The weighted variation of information 
distance measure presented here improves the clustering consistency to engender confidence in 
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the results, with customers assigned similarly throughout multiple experiment trials. The 
weighted variation of information focuses on flow event behaviors with a tight variation in time 
and volume and relies less upon behaviors that vary widely from day to day. 
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