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Abstract - In this paper a method of classifying phonemes 
by combining a dynamical systems approach with sub-
band decomposition of speech signals is presented. The 
ability of reconstructed phase spaces to effectively model 
sub-bands of phonemes in different phonological classes is 
demonstrated. Experiments performed over the TIMIT 
database show how well phonemes from different 
phonological classes can be recognized in different 
frequency bands. It is hypothesized that given these 
results, filtering signals before embedding has the 
potential to improve classification accuracy.  

I. INTRODUCTION 

Standard automatic speech recognition (ASR) systems 
use acoustic features based on linear models [1]. The most 
common of these linearly based acoustic features are cepstral 
coefficients [1]. The underlying model, upon which cepstral 
coefficients are based, describes human speech production as 
an excitation source representing the glottis and a linear time-
invariant filter representing the vocal tract. Cepstral analysis 
allows the excitation source energy to be separated from the 
frequency response characteristics of the vocal tract. 

Such linear assumptions have resulted in many 
successful speech applications [1]. However, approaches that 
can capture potential nonlinearities of the vocal tract and 
coupling of the glottis and vocal tract systems without 
dramatically increasing the time and space complexity of the 
corresponding models have the potential to improve ASR 
performance. Recent studies of nonlinear acoustic features 
show that exploiting nonlinearities in the speech production 
system can result in ASR system performance improvements 
[2-5]. 

II. BACKGROUND AND MOTIVATION 

Our approach to capturing the nonlinearities of the 
speech production system is based on a dynamical system 
method called phase space reconstruction. Takens has shown 
[6] that given proper assumptions a reconstructed phase space 
(RPS) can be constructed that is topologically equivalent to 
an original system. In this work the original system is the 
speech production system. Using the speech signal generated 
by the speech production system a RPS is formed as follows: 
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where τ is the time lag and d is the dimension of the RPS. A 
two dimensional RPS is illustrated in Figure 1 for the 
phoneme ‘/ao/’.  

Figure 1 – Reconstructed phase space of ‘/ao/’ phoneme. 

Because the RPS is topologically equivalent when d is 
large enough, the nonlinearities present in the original system 
are still present in the RPS. Hence, an RPS based approach 
can capture nonlinear characteristics of the speech production 
system. We have studied various models of the resulting 
patterns visible in RPSs with initial promising results [3, 7]. 
In studying the RPS patterns, an apparent slow/fast dynamic 
can be observed. This is also seen in traditional speech 
processing. 

One mechanism for exploiting the apparent slow/fast 
dynamic is through sub-banding the speech signal. Such sub-
banding has been previously applied to speech signals with 
the goal of improving recognition of noisy speech [8-10]. 
Sub-banding work is motivated in part by experimental work 
done by Harvey Fletcher at Bell Labs in the 1920’s [11]. His 
results suggest that humans recognize speech in independent 
frequency bands. There is also substantial evidence that the 
human cochlea acts as a filter bank, possibly splitting the 
speech waveform into several sub-bands for recognition [12]. 
The basilar membrane, which conducts energy received from 
the outer and middle ears to the hair cells in the inner ear, is 
shaped in such a way that high frequencies cause large 
amounts of vibration on one end, and low frequencies cause 
strong vibrations on the opposite end. Because of this, each 
location on the basilar membrane reacts most strongly to a 



particular frequency, passing the signal components with that 
frequency on, and attenuating the other frequency 
components. 

III. SUB-BAND RPS APPROACH 

Previous studies have shown that recognition of speech 
in sub-bands yields ASR systems more robust to narrowband 
noise [8-10]. If the noise is concentrated in one frequency 
band, it can be isolated by performing recognition on multiple 
sub-bands independently, therefore combining the sub-band 
recognitions can minimize deleterious noise effects on overall 
speech recognition. In some cases, using sub-band 
approaches has shown small improvements on uncorrupted 
speech. 

Figure 2 – RPS of ‘/iy/’ phoneme low pass filtered at 
1800 Hz. 

Figure 3 – RPS of ‘/iy/’ phoneme high pass filtered at 
1800 Hz. 

We take a similar approach using RPSs. Before creating 
an RPS of the speech signal, the speech signal is passed 
through a bank of filters, which are Chebychev type II, 
spaced logarithmically according to the approximate Mel-
scale. Figures 2 and 3 show the RPSs for two sub-bands of 
the ‘/iy/’ phoneme. These sub-bands are created with a 
lowpass filter with a cutoff of 1800 Hz, and a highpass filter 
with the same cutoff. The signals are passed through the 

filters forward and backward to avoid phase distortion of the 
signal. 

After filtering, an RPS is created from each filtered 
signal. Gaussian mixture models (GMM) of the phase space 
are learned for each class using the EM algorithm. The GMM 
for each class uses 128 Gaussian mixtures to describe the 
distribution of the RPS points over all examples of that class. 
Each test phoneme is classified with a Bayes’ classifier that 
determines the likelihood of each class for that test example. 
The likelihood is computed as 
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where x is the test data vector, and C  is the number of 
classes. The class with the greatest likelihood is selected by 
the classifier. 

IV. EXPERIMENTS 

Experiments are performed over the entire TIMIT 
database. The phoneme set is split into four phonological 
categories: vowels, fricatives, nasals, and stops. Table 1 
shows the number of examples in each testing set.  
 

 Vowels Fricatives Nasals Stops 
Testing Set 20,914 7,724 5,105 7,932 

Table 1 – Number of examples in training and testing sets for 
all four categories. 

As a baseline, fullband (unfiltered waveform) signals are 
classified using the RPS/GMM approach with τ = 6 (time lag) 
and d = 5 (dimension) [3]. Then the signals from each data 
set are filtered into four independent sub-bands, and 
classification is performed on each sub-band individually. 
The Chebychev II filters are of order 36, with a stopband 
attenuation of 70 dB, and are implemented using a second-
order section structure. 

V. RESULTS 

The results for the RPS experiments are shown in Table 
2. For the nasal class, one of the sub-bands gave better 
accuracy than the fullband case, and the stop class had a sub-
band with nearly the same accuracy as the fullband. The 
relative performance of the sub-bands is not uniform across 
the four classes. Stops are best recognized in the highest and 
lowest frequency bands, while vowels are better recognized 
in the middle frequency bands. Fricatives and nasals, though, 
have the best accuracies in the first and third bands. 
 
Class Fullband < 630 

Hz 
630–
1790 
Hz 

1790–
4000 
Hz 

> 4000 
Hz 

Vowels 29.59% 17.97% 25.76% 19.03%  7.79% 
Fricatives 36.68% 28.11% 22.33% 30.31% 21.48% 
Nasals 31.48% 26.68% 27.56% 34.16% 26.15% 
Stops 36.28% 35.26% 26.34% 25.29% 31.61% 

Table 2 – Classification accuracies of phonemes in four 
phonological categories in various sub-bands. 

 

 



VI. DISCUSSION AND CONCLUSIONS 

It was shown that individual RPS sub-bands of 
phonemes can be used for classification, and that different 
phoneme classes are classified more successfully in different 
frequency ranges. Clearly, recognition accuracy could be 
improved if the recognizer can decide which band(s) to 
regard as more reliable on an individual phoneme basis.  

Developing a system that uses sub-band decomposition 
and RPSs could yield improvements over the fullband 
approach. In future work, combination of sub-band 
classifications will be investigated. Specifically, we will 
study the number of sub-bands to use, appropriate center 
frequencies and bandwidths, and methods for combining 
individual sub-band classifications. 
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