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Abstract — Domain knowledge is an essential factor for 

forecasting energy demand.  This paper introduces a method that 

incorporates machine learning techniques to learn domain 

knowledge by transforming the input features. Our approach 

divides the inputs into subsets and then searches for the best 

machine learning technique for transforming each subset of 

inputs. Preprocessing of the inputs is not required in our 

approach because the machine learning techniques appropriately 

transform the inputs. Hence, this technique is capable of learning 

where nonlinear transformations of the inputs are needed. We 

show that the learned data transformations correspond to energy 

forecasting domain knowledge. Transformed subsets of the inputs 

are combined using ensemble regression, and the final forecasted 

value is obtained. Our approach is tested with natural gas and 

electricity demand signals. Experimental results show how this 

method can learn domain knowledge, which yields improved 

forecasts. 

Index Terms--Machine learning, Demand forecasting, Time series 

analysis, Feature transformation, Domain knowledge. 

I. INTRODUCTION  

Building forecasting models for energy demand is an active 
research field in engineering, statistics and econometrics [1-3]. 
Prior domain knowledge substantially improves energy 
demand forecasting accuracy. However, domain knowledge 
may differ between the types of energy to be forecasted. When 
forecasting in new energy domains, it is likely that there is 
insufficient domain knowledge to build an accurate forecasting 
model. This paper proposes an algorithm that can extract 
domain knowledge from the energy demand signals.  

Nonlinear modeling techniques are typically needed to 
representation domain knowledge [4]. We use machine 
learning approaches that are capable of modeling nonlinearities. 
Such machine learning methods have been used for feature 
extraction [1, 5], input preprocessing [1, 6] and knowledge 
extraction [7, 8].  The work of Valenzuela [4] is an example of 
integrating an automatic model discovery algorithm with 
domain knowledge learning. In this technique, the domain 
knowledge is learned using a rule extraction technique. In 
contrast, we propose a two stage forecasting algorithm. The first 

stage automatically captures energy demand forecasting 
domain knowledge through nonlinear transformation of the 
input features. In the second stage, the transformed features are 
combined via hybridization [2-4] and ensembling [2]. We 
compare our new algorithm against models with and without 
domain knowledge.  

The research work presented in this paper is motivated by 
the scenario where sufficient domain knowledge is not present. 
For example, an experienced gas demand forecaster is planning 
to start forecasting electricity demand. The forecaster has 
sufficient historical electricity data available but domain 
knowledge is limited in the relevant area. The feature extraction 
method can be used to extract the domain knowledge from the 
available historical electricity data and a reasonable forecasting 
can be made based on the extracted feature. Further research in 
this technique can result in a further improvement in forecasting 
accuracy when used in conjunction with the available domain 
knowledge. 

It is common to use multiple nonlinear modeling techniques 
and ensemble the results to forecast the energy demand [2-4]. 
The paper also uses multiple nonlinear techniques. The 
contribution of this paper is, it demonstrate feature extraction 
and the domain knowledge representation ability of nonlinear 
technique and obtain a better accuracy using the ensemble. 
Each of the nonlinear techniques are applied with a single input 
that enables feature extraction and domain knowledge 
representation.  

II. TECHNICAL DISCUSSION 

The proposed feature transformation algorithm incorporates 
autoregressive and moving average (ARMA), regression trees 
(RT), and artificial neural networks (ANN).  A brief overview 
of these methods is presented in this section. 

A. Autoregressive and Moving Average (ARMA) 

 An autoregressive and moving average (ARMA) model 
combines both autoregressive and moving average terms. It is 
one of the most commonly used techniques for forecasting time 
series and was popularized by Box and Jenkins in their time 
series analysis book [9]. An ARMA model is represented by 
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where t
Y  indicates the time series value at time t. Similarly, t i

Y


indicates the value recorded at time t-i. The φ’s represent the 

AR coefficient, where φi is the coefficient for t i
Y

 . The  values 

are the coefficients of the moving average terms. Additional 
terms include the constant value c and a time-dependent 

random variable t
 . The variable p is the AR order and q is the 

MA order. 

B. Regression Tree(RT) 

A regression tree is a special form of a binary decision tree 
used for building nonlinear regression models. A binary 
decision tree is a machine learning technique used for the 
classification, and a regression tree is used for regression. Like 
a binary decision tree, the decision nodes in a regression tree 
represent a decision based on the value of a given attribute. The 
leaves of the tree are learned using the forecasted values. There 
are fast and reliable algorithms available to learn the nodes and 
leaves [10]. Regression trees have been used for forecasting 
[10, 11]. An advantage of using a regression tree is that it can 
be learned quickly.   

C. Artificial Neural Network(ANN) 

An ANN consists of fully/partially connected neurons and 
can often implement effective nonlinear model. The weights of 
the connection between the neurons can be learned using 
suitable training algorithm. ANNs are widely used for energy 
demand forecasting [12-14].  

D. Ensemble regression 

Ensemble regression [15, 16] uses the outputs from all of 
the component models in determining the final output. 
Ensemble regression nonlinearly transforms the component 
model outputs and learns weights for each of the transformed 
outputs. If component model outputs were not transformed, 
ensemble regression would be equivalent to linear regression, 
where the component model outputs are independent variables, 
and the weights are regression parameters. Ensemble regression 
combines the outputs from the different modeling techniques. 

III. PROPOSED METHOD 

Our approach includes two training stages. 

A. Stage I training 

In the first stage, a set of statistical and machine learning 
techniques are used for modeling the inputs. A set of candidate 
models are examined against different subsets of the inputs. 
Using a search approach, the most appropriate model among 
the candidate models is chosen for each individual input subset. 
In our case, the candidate modes were ARMA, RT and ANN. 
The inputs were previous energy demand, weather inputs, and 
seasonality. Using our search based approach ARMA, RT, and 
ANN, were chosen, respectively, to transform previous energy 
demand, weather inputs, and seasonal information. The feature 
transformation method is described below. 
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where Xj is input subset j, m is a model, MAPE is the mean 

absolute percentage error of the forecasts of m of the training 

energy demand, and mj is the model chosen to transform Xj. 

A set of candidate models such as ARMA, RT, ANN are 
used. The input subset Xj is tested with the candidate models. 
For example the previous energy demand data is tested with 
ARMA, RT, and ANN. The candidate model that gives the 
minimum MAPE is chosen as the model for that input. In this 
example, the ARMA, ANN, and the RT are selected for the 
previous energy demand data, the seasonal information, and the 
temperature input, respectively.  

B. Stage II training. 

The energy demand forecast outputs generated from each of 
those selected models are used as the inputs for the second stage 
of the training: ensemble regression. Our chosen ensemble 
regression technique uses a generalized linear model with 
quadratic fitting, and with identity as the link function with a 
normal random distribution. The ensemble regression is 
represented as follows. 
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where ˆ
t

Y  is the estimated energy demand, c is the regression 

intercept, M is the total number of models, γi is the regression 
parameter for model mj, f is a quadratic function and Xj,t is the 
input subset at time t.  

Once the individual models are trained with the training 
data, the forecasted output from these models are obtained by 
using the training data. These outputs are used as inputs for the 
ensemble regression model. The ensemble regression learns a 
quadratic transformation and weights for each of the input 
subsets. 

C. Testing 

Forecasting using the feature transformation technique is 
straightforward. Testing data is input into the first stage feature 
transformation models. The output of the feature transformation 
models is fed into the ensemble regression, which generates the 
final forecast. 

IV. DATA 

Our proposed approach is tested with the natural gas and 
electricity datasets. The gas dataset consists of daily natural gas 
usage and temperature for 4800 days from a specific location in 
the United States. The electricity dataset consists of daily load 
and temperature for 2800 days from another specific location in 
the United States. The data is normalized due to confidentiality. 
The normalized natural gas and electricity datasets are shown 
in Figure 1 and Figure 2, respectively. 



 

Figure 1: Natural gas demand 

 

Figure 2: Electricity demand 

The first 80% of the data is used for training; the remaining 
20% is used for testing. The inputs are 16 autoregressive terms 
with temperature and day of the year as exogenous inputs. 

 

V. ANALYSIS OF TRANSFORMED FEATURES 

The nonlinear transformation of the input subsets reveals 
domain knowledge applicable to the input. As an example, a 
prior domain knowledge suggests a nonlinear transformation to 
the temperature known as heating degree day (HDD) [17]  as 

  max 0, ,
t ref t

HDD T T   (4) 

where Tt is the temperature at day t and Tref is the reference 
temperature. This transformation is seen in Figure 3. 

 

Figure 3: Transformation of temperature for natural gas 

Significant improvement in forecasting accuracy can be 
achieved by applying this domain knowledge [17]. In Figure 3, 
the RT generates a similar nonlinear transformation of the 
temperature input. Figure 3 shows the temperature input and the 
output of the RT model normalized between -1 to 1. This RT 
model is trained for the gas dataset. A nonlinear transformation 

is made to the temperature by the feature transformation 
method, which is similar to having domain knowledge that 
suggests a similar nonlinear transformation in the temperature 
represented by (4).  

 

Figure 4: Transformation of temperature for natural gas 

If we plot the actual temperature against the RT model 
output (i.e., the preprocessed and nonlinearly transformed input 
temperature) in Figure 4, we observe the similar representation 
of domain knowledge as presented by Equation (4). The Figure-
4 presents the transformed output with an expression 1.9 * 
max(0, 55-Tt). This indicates a strong correlation between the 
transformed feature and actual domain knowledge presented by 
Equation (4).Thus, the feature transformation method is 
capable of learning domain knowledge.  

 

Figure 5: Transformation of temperature for electricity 

When tested with the electricity dataset, the transformation 
of the temperature shows different behavior, presented in 
Figure 5. The behavior is also consistent with domain 
knowledge of electricity. Unlike natural gas, where the demand 
becomes nearly constant after a certain threshold of 
temperature, the electricity demand increases after the threshold 
temperature, as suggested by Figure 5. The phenomenon is 
usually modeled by another nonlinear transformation in the 
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Representation of Domain Knowledge (HDD)

Transformation by the Feature Transformation Method
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Representation of Domain Knowledge (CDD + HDD)

Transformation by the Feature Transformation Method



temperature known as cooling degree day CDD) [17] as shown 
in Equation (5) 

  max 0, ,
t t ref

CDD T T   (5) 

where Tt is the temperature at day t and Tref is the reference 
temperature.  

The transformed output in Figure-5 can be represented by the 
expression 1.1*max(0, 55-Tt) + 3.6*max(0, Tt-58), which is a 
linear combination of Equation (4) and Equation (5), where the  
constant are chosen to illustrate the correlation with the 
extracted feature. The feature transformation method 
automatically performs the HDD transformation for the natural 
gas dataset and both the HDD and CDD transformation for the 
electricity dataset without having prior knowledge of the type 
of energy demand forecasting. 

VI. RESULTS AND ERROR ANALYSIS 

A set of candidate models (ARMA, RT and ANN) are used. 
For each set of inputs (AR terms, day of the year, and 
temperature) a model is selected according to (2). The selected 
models are presented in TABLE I. Each of the input subsets is 
modeled using the automatically selected modeling method. 
The outputs from each of these models are combined using the 
ensemble regression method. Our approach is tested with the 
real gas and electricity datasets. Errors are calculated using 
mean average percentage error (MAPE) using the below 
formula 
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where t
Y is the actual output, ˆ

t
Y is the forecasted output and n is 

the total number of data points.  

To compare the performance, two sets of benchmarks are 
created using the linear regression model. One benchmark 
technique uses domain knowledge, and the other does not. The 
results from the feature transformation method proposed by this 
paper are compared with the results from both of the 
benchmarks.  

TABLE I.  MODEL SELECTION FOR INPUT SUBSETS 

Variable Technique Attributes 

AR terms ARMA 16 AR order 

Temperature RT Min parent 53, Min leaf 2 

Day of year RT Min parent 53, Min leaf 2 

Day of week ANN 1 Hidden layer 

Table II shows the test result for the gas dataset by using 
above input-model sets. TABLE III represents the test result for 
the electricity dataset also by using the same input model sets. 
For the electricity datasets, the feature transformation method 
exceeds the forecasting accuracy of both the benchmarks. For 
the natural gas dataset, the feature transformation method is far 
more accurate than the benchmark of no domain knowledge. 
The accuracy of the feature transformation method is close to 
the accuracy of benchmark of having domain knowledge. For 

both the electricity and the gas datasets the feature extraction 
technique provides better accuracy than the individual machine 
learning technique such as ANN and RT. This indicates that the 
selection of different nonlinear feature extraction techniques for 
different input variables and ensemble the individual model’s 
output yields more accurate result than using a single machine 
learning technique with all inputs. 

This paper demonstrates the feature transformation of 
temperature input using Figure 4 and 5. The other two inputs, 
day of year and day of week, are also transformed nonlinearly 
by the feature transformation technique in a similar fashion and 
contribute towards the accuracy.   

TABLE II.  TESTING MAPE FOR NATURAL GAS DATASET 

Model MAPE 

Benchmark without domain knowledge 27.13 

Benchmark with domain knowledge 7.58 

Using only ANN for all inputs 8.13 

Using only RT for all inputs 8.11 

With feature transformation 7.83 

TABLE III.  TESTING MAPE FOR ELECTRICITY DATASET 

Model MAPE 

Benchmark without domain knowledge 6.51 

Benchmark with domain knowledge 4.12 

Using only ANN for all inputs 4.37 

Using only RT for all inputs 4.25 

With feature transformation 3.91 

VII. CONCLUSION 

The test results show that our feature transformation method 
is capable of effective automatic input preprocessing. Our 
technique also is able to learn and represent domain knowledge 
learned from the data. The feature transformation method even 
shows better accuracy than the linear model using prior domain 
knowledge. 

One problem of using the feature transformation method is 
that the output from the regression tree is discrete instead of 
continuous. Even though other continuous methods are tested 
with the temperature, a regression tree provided the best result. 
Further research with other continuous models is needed. 
Another potential problem with the regression tree is that it may 
not perform well for the unusual cold or hot days. Test results 
show that, using the regression tree, the output does not change 
significantly for exceptionally cold or hot temperatures. This is 
also an opportunity for further research.  

The machine learning techniques introduced by this paper 
use the historical energy demand data, and the current 
temperature, and day of the year as inputs. It is also important 
to include historical temperatures and also other relevant inputs, 
such as other weather variables and economic variables. Each 
of these new set of inputs can be modeled using different feature 
transformation techniques. Also, it can be useful to build 
mechanisms for learning more complex domain knowledge 
using the additional sets of inputs.  
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