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ABSTRACT 
AUTOMATION OF ENERGY DEMAND FORECASTING 

Sanzad Siddique, B.S. 

Marquette University, 2013 

Automation of energy demand forecasting saves time and effort by searching 
automatically for an appropriate model in a candidate model space without manual 
intervention. This thesis introduces a search-based approach that improves the 
performance of the model searching process for econometrics models. Further 
improvements in the accuracy of the energy demand forecasting are achieved by 
integrating nonlinear transformations within the models. This thesis introduces machine 
learning techniques that are capable of modeling such nonlinearity. Algorithms for 
learning domain knowledge from time series data using the machine learning methods are 
also presented. The novel search based approach and the machine learning models are 
tested with synthetic data as well as with natural gas and electricity demand signals. 
Experimental results show that the model searching technique is capable of finding an 
appropriate forecasting model. Further experimental results demonstrate an improved 
forecasting accuracy achieved by using the novel machine learning techniques introduced 
in this thesis. This thesis presents an analysis of how the machine learning techniques 
learn domain knowledge. The learned domain knowledge is used to improve the forecast 
accuracy. 
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1 INTRODUCTION 

Building forecasting models for energy demand is an active research field in 

engineering, statistics and econometrics. A literature review finds previous works that 

automate the process of determining the forecasting model attributes such as type, orders 

and parameters [1-8]. It is possible to build the forecasting model automatically with the 

help of existing econometrics techniques [1-3] and information minimization criteria 

techniques [5-8], but these techniques suffer from performance issues in terms of accuracy 

and speed, especially for the higher order models. Kavaklioglu [9], Azadeh [10, 11] and 

Oĵcu [12] recently have applied machine learning approaches to learn forecasting model 

orders and parameters. The work of Valenzuela [4] is an example of integrating an 

automatic model discovery algorithm with domain knowledge. This thesis builds on the 

work of these authors. This thesis integrates machine learning and econometrics methods 

to create a novel approach to automatically learn forecasting model type, order and 

parameters. 

1.1 Problem Statement 

The forecasting model-building process manually searches the model space 

requiring significant time and effort. The model space consists of candidate models. A 

candidate model includes specifications of the model type, the model order and the model 

parameters. Having an automated process to construct the forecasting model by 

automatically searching the model space is a solution to this problem. The purpose of this 

thesis is to develop algorithms that contribute towards automating the process of building 

energy demand forecasting models. The algorithms introduced in this thesis automatically 
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search the space of candidate models. The model space includes statistical models such as 

autoregressive and moving average (ARMA) models, autoregressive and moving average 

with exogenous inputs (ARMAX) models and machine learning models such as artificial 

neural network (ANN), regression tree (RT) and support vector regression (SVR) models. 

An overview of the statistical models and machine learning techniques are presented in 

chapter two. The search algorithm also determines the model attributes such as structure, 

order and parameter values.  

1.2 Motivation for this work 

The process of energy demand estimation involves model identification, parameter 

estimation and prediction using the identified model. Generally, the complete model 

identification process is complex and requires substantial manual effort. The aim of this 

thesis is reduce the manual effort in building a model for energy demand forecasting. The 

contribution of this thesis is a set of novel techniques that contribute towards automation 

of energy demand forecasting model learning. Automatic energy demand forecasting 

model learning requires a process that performs all of the necessary steps of building a 

statistical forecasting model. The statistical forecasting model building steps include 

identifying the model type, the model structure, and the parameter values. 

Energy demand time series are nonlinear by nature [13]. Thus, recent work has 

applied nonlinear modeling techniques to energy demand forecasting [9-11]. Also, 

significant improvement in forecasting can be achieved by incorporating multiple 

forecasting techniques through hybridization [4, 14, 15] and by applying ensemble 

learning [14]. There are examples in the literature where nonlinear machine learning 
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methods are combined with linear models using ensemble techniques [3, 15]. This thesis 

extends this work by building ensembles of linear and nonlinear models.  

Accurate forecasting of energy demand requires domain knowledge. Domain 

knowledge may differ between the types of energy to be forecasted. When forecasting in 

new energy domains, it is likely that there insufficient domain knowledge to build an 

accurate forecasting model. Thus, this thesis proposes an algorithm that can extract 

domain knowledge from the energy demand signals. A nonlinear technique typically is 

needed for the representation of domain knowledge [4]. Machine learning techniques are 

incorporated into the overall process to facilitate learning of domain knowledge. The 

models proposed by this thesis incorporate domain knowledge learning mechanisms. 

Seasonal decomposition of energy demand provides reasonable results [14, 16, 

17]. This thesis proposes and examines techniques based on the seasonal decomposition 

and combination of the results from the models built on the decomposed datasets. 

1.3 Scope of the Work 

Energy demand is usually forecasted for long term, midterm and short term [18]. 

Long term forecasting helps make strategic decisions. Midterm forecasting is used for 

managing resources. Short term energy demand forecasting reduces excess energy 

generation, blackouts and negative economic impact [19, 20]. This thesis introduces 

techniques that can automate short term energy demand forecasting. However, the 

techniques introduced by this thesis may help midterm and long term forecasting as well. 

Techniques introduced by this thesis are for forecasting the energy demand. It may 

be possible to apply the technology proposed in this thesis to other areas, but other 

applications are not examined here. The proposed algorithms are built and tested with 
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energy demand data. Moreover, the methods are tested exclusively on natural gas and 

electricity demand.  

 

Figure 1.1 – Context of the work 

An energy demand forecasting automation process is shown in Figure 1.1. The 

process starts with data cleaning. The candidate models from the model space are 

examined using the cleaned data. The forecasting problem, the business models and 

domain knowledge are used in the data cleaning and in the model searching processes. 

The selected models are used for forecasting the energy demand. The error is analyzed, 

and necessary changes are made in the data cleaning and the model searching processes. 

The data cleaning and the business model are not in the scope of this thesis. The thesis 
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assumes that the data is clean and without anomalous data. This thesis focuses on the 

model search. 

1.4 Summary of the Work  

The presentation of this work starts by explaining simpler models and then extends 

the work towards more complex models. Time series that follow the ARMA model are 

presented first. The initial goal is to automate the process of finding a model among AR, 

MA or combined (ARMA) models with optimal orders and parameters. The automated 

process is done in several phases. The ARMA model identification involves two main 

steps: order identification and parameter estimation. The proposed research develops 

methods for finding the most appropriate model order. As there are different techniques 

available, the various techniques are tested and analyzed. Among these techniques, the 

Bayesian information criteria (BIC) technique determines the model orders most 

accurately. This thesis presents a search-based approach that overcomes the poor 

computational performance of a brute force BIC search. The search-based ARMA model 

discovery technique is extended to the discovery of the autoregressive and moving 

average with the exogenous inputs (ARMAX) model.  

Besides linear components, energy demand time series data contains nonlinear and 

seasonal components [13]. Thus, it is desirable to improve forecasting accuracy by 

combining the linear models, such as ARMA and ARMAX, with nonlinear techniques and 

by considering the seasonal nature of the energy demand. Machine learning techniques 

such as ensemble learning [21], support vector regression [22, 23], artificial neural 

networks [10-12, 20] and regression trees [24, 25] are used widely for building nonlinear 

forecasting models. This thesis uses these techniques for modeling the nonlinearity of the 
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underlying system and also to learn model dimensions and parameter values. Furthermore, 

improvement in forecasting accuracy can be achieved by incorporating multiple 

forecasting techniques such as hybridization [4, 14, 15] and ensemble learning [14]. This 

thesis suggests several ensemble learning methods that can forecast the energy demand 

accurately and automatically.  

The first method, ENSEMBLE-REGRESSION, integrates the result from other 

statistical and machine learning techniques such as autoregressive and moving average 

with exogenous inputs (ARMAX), support vector regression (SVR), artificial neural 

networks (ANN) and regression trees (RT). Initially, energy demand is forecasted using 

those techniques. The results from each of those techniques are combined with the 

ensemble learning technique.  

The second method, INPUT-MODELING, uses linear statistical modeling techniques 

and nonlinear machine learning techniques to model different sets of inputs. Those models 

are combined using the ensemble technique. The final forecasting result is obtained from 

the ensemble technique. The third method also performs input modeling, but uses residual 

instead of the actual demand data.  

The third technique, MODELING-SEASONALITY, models the energy demand based 

on seasons. Some of the previous research works represent the decomposition of energy 

demand time series data based on the seasonal information [4, 14]. The decomposed data 

then is estimated using forecasting modeling techniques and then combined using the 

ensemble learning technique. Using these ideas, the energy demand time series data is 

partitioned into seasons. The separate seasonal datasets are modeled individually. Outputs 
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from the individual models are combined using an ensembler. The final forecasted value is 

obtained from the ensemble output. 

1.5 Summary of Contributions 

The novel techniques proposed by this thesis are tested, and the test results are 

obtained. The test results show the accuracy and the performance improved by these 

techniques. The search-based algorithm is tested to estimate the orders of the econometrics 

models, including the autoregressive and moving average (ARMA), autoregressive with 

exogenous input (ARX) and the autoregressive and moving average with exogenous input 

(ARMAX) model. The three novel machine learning techniques are also tested, and the 

results are compared with the standard modeling techniques. The search-based approach 

show improved computational performance, and the machine learning techniques show 

improved accuracy.  

1.6 Organization of the Thesis 

This thesis contains five chapters. The first chapter provides an introduction to the 

thesis. The second chapter provides an overview on the forecasting techniques. The first 

section of the second chapter describes statistical and econometrics time series modeling 

techniques such as autoregressive (AR), moving average (MA), autoregressive with 

exogenous inputs (ARX), autoregressive and moving average (ARMA), autoregressive 

and moving average with exogenous inputs (ARMAX) and linear regression (LR). The 

second section in chapter two provides an overview of machine learning techniques such 

as artificial neural networks (ANN), regression trees (RT), support vector regression 

(SVR) and ensemble learning.  
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Chapter three introduces four novel techniques and algorithms. The first two 

sections of chapter three describe econometrics and statistical modeling techniques 

proposed by this thesis. The third section describes the new machine learning and hybrid 

techniques.  

Chapter four describes the training and testing methods. The results are 

represented and analyzed in chapter four. Chapter five provides conclusions and 

suggestions for future work. 
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2 OVERVIEW OF FORECASTING TECHNIQUES 

 

This chapter describes various forecasting techniques on which this thesis is based. 

These forecasting techniques include statistical and econometric models and machine 

learning techniques. The first section of this chapter describes the statistical and 

econometrics forecasting techniques. The second section describes various machine 

learning techniques used in this thesis. The third section presents the literature review of 

these techniques. The previous works in the relevant area are discussed in this section. 

2.1 Statistical and Econometric Models 

Many statistical and econometrics modeling techniques are available for 

forecasting time series data. These methods successfully forecast in many different areas 

such as financial [26], weather [27], energy [28] and household devices [29]. Hence, the 

methods are widely accepted. Forecasting modeling techniques include autoregressive 

(AR), autoregressive and moving average (ARMA), autoregressive moving average with 

exogenous input (ARMAX) and linear regression (LR). This section reviews these 

techniques. 

2.1.1 Autoregressive Model 

Autoregressive (AR) models are useful when the value to be forecasted is 

correlated to the previous values in the time series. The AR model is  

 1 1 2 2 ..... ,t t t t p t pY c Y Y Ye j j j- - -= + + + + +  (2.1) 

where tY indicates the time series value at time t, and t iY - indicates the value recorded at 

time t-i. The űôs represent the AR coefficients, where űi is the coefficient for t iY - . 
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Additional terms include a constant value c and a time-dependent normal random variable

te . Equation (2.1) is rewritten as 

 
1

,
p

t t i t i
i

Y c Ye j -
=

= + +ä  (2.2) 

where p represents the number of previous time series values to be incorporated into the 

model. This variable p is known as AR model order. 

2.1.2 Moving Average Model 

Moving average (MA) models are constructed by calculating the running average 

of the error generated at each point of time. Generally, the average values are weighted. 

The moving average model has the form 

 1 -1 2 -2 -..... ,e q e q e q e= + + + + +t t t t q t qY c  (2.3) 

where tY is the forecasted value at time t, which is a weighted average of the error at 

previous instances of time. The q  values are the coefficients of the moving average 

terms. Equation (2.3) is rewritten as 

 
1

,
q

t t j t j
j

Y c e q e -
=

= + +ä  (2.4) 

where q, representing the number of previous error terms in the model, is known as the 

MA model order. 

2.1.3 Autoregressive and Moving Average Model 

An autoregressive and moving average (ARMA) model combines both 

autoregressive and moving average terms. It is one of the most commonly used 
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order, ɖi is the parameter of the exogenous input at time i and te is a time-dependent 

random value that represents model error. 

2.1.5 Autoregressive Moving Average with Exogenous Input Model  

The autoregressive moving average with exogenous input (ARMAX) model is an 

extension of the ARMA model. It is similar to the ARX model with the additional moving 

average terms. The ARMAX model is  

 
1 1 0

,j e q e h- - -
= = =

= + + + +ä ä ä
p q b

t i t i t j t j i t i
i j i

Y c Y d  (2.8) 

where tY is the forecasted value at time t, c is a constant, p is the autoregressive orders, q is 

the moving average order, ű’s are the autoregressive parameters, ɗ’s are the moving 

average parameters, d is the exogenous inputs, b is the exogenous input order, ɖi is the 

parameter of the exogenous input at time i and Ůt is random model error. Equation (2.8) is 

similar to Equation (2.7) for the ARX model, but with added moving average component, 

where the ɗ’s are the moving average parameters, and q is the MA order. 

2.1.6 Linear Regression Model 

Linear regression (LR) models represent the relationship between a set of 

independent variables and a dependent variable. The dependent variable is correlated with 

each of the independent variables. The relationship is represented as  

 1 1 2 2 ... ,t n nY c x x xa a a= + + + +  (2.9) 

where Yt is the dependent variable and 1 2, ,..., nx x x  are the independent variables. Each of 

these independent variables has a linear relationship with the dependent variable Y. The 
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symbols 1 2, ,...., na a a  represent the coefficients for respective independependent variables 

and are known as the parameters of the linear regression model. Variable c represents a 

constant offset. Equation (2.9) is rewritten as 

 ,t tY c= +ŬX  (2.10) 

where 1 2[ , ,...., ]na a a=Ŭ  and 1 2[ , , ..., ]T
t nx x x=X . 

2.2 Machine Learning Techniques 

Besides econometrics, statistical modeling and regression techniques, it is possible 

to incorporate machine learning techniques to forecast a time series. Machine learning 

techniques can be used for input selection and for learning the model dimension and 

parameters. It is possible to incorporate machine learning techniques with existing 

statistical and econometrics modeling techniques and to combine the results using an 

ensembler. Besides building the forecasting model by learning the model dimensions and 

parameters, it is possible to acquire domain knowledge for a particular area and apply it to 

different domain. Thus, machine learning techniques are capable of translating domain 

knowledge and are able to provide equivalent accuracy in forecasting without having 

complete domain knowledge compared to the accuracy obtainable by having domain 

knowledge.  

Many machine learning techniques solve classification problems, but machine 

learning techniques also can be applied to regression problems. This section describes the 

machine learning techniques used in this thesis including ensemble learning, regression 

trees (RT), artificial neural networks (ANN) and support vector regressions (SVR). 
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2.2.1 Ensemble Learning 

Ensemble learning combines results from other learners to provide a summary of 

results. Ensemble learners are used for classification [21] and regression [30, 31] 

problems. This thesis uses both the classification and regression ensemble techniques. The 

techniques are discussed in turn. 

2.2.1.1 Majority Voting Ensemble 

Majority voting treats each member (output from other machine learning 

techniques) equally and selects one output as a winner. The winner is the output chosen by 

the majority of the members. Thus, majority voting is the simplest ensembler and does not 

require model parameter learning. The result is obtained once the outputs from all 

members are available. This thesis uses the majority voting technique for selecting the 

forecasted value from more than one model output.  

2.2.1.2 Ensemble Regression Algorithm 

While majority voting selects a single output, ENSEMBLE-REGRESSION uses the 

outputs from all of the component models in determining the final output. ENSEMBLE-

REGRESSION nonlinearly transforms the component model outputs and learns weights for 

each of the transformed outputs. If component model outputs were not transformed, 

ENSEMBLE-REGRESSION would be equivalent to linear regression, where the component 

model outputs are independent variables, and the weights are regression parameters. 

ENSEMBLE-REGRESSION combines the outputs from different modeling techniques. 
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Figure 2.1 – ENSEMBLE-REGRESSION 

Figure 2.1 represents ENSEMBLE-REGRESSION, where outputs from N forecasting 

techniques are combined using linear regression using a least square regression method 

[32]. The output from the individual component techniques can be transformed 

individually and nonlinearly before the regression.  

2.2.2 Regression Tree 

A regression tree is a special form of a binary decision tree used for building nonlinear 

regression models. A binary decision tree is a machine learning technique used for the 

classification, and a regression tree is used for regression. Like a binary decision tree, the 

decision nodes in a regression tree represent a decision based on the value of a given 

attribute. The leaves of the tree are learned using the forecasted values. There are fast and 

reliable algorithms available to learn the nodes and leaves [24]. Regression trees are used 

for forecasting [24, 25]. An advantage of using a regression tree is that it can forecast very 

quickly. Figure 2.2 shows an example of a regression tree. In this example, the inputs have 
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four different attributes such as x1, x2, x3 and x4. Each internal node represents a condition 

on one these attributes. The leaves contain the output values (i.e., values for Y). Once the 

complete regression tree is learned, an input is examined at the top node and is followed to 

the child nodes until a leaf is reached. The selected leaf represents the corresponding 

output for the given input. This thesis uses the regression tree to build a hybrid forecasting 

model, which is described in chapter three.  

 

Figure 2.2 – Example regression tree 

The regression tree can model a continuous variable, but as discrete values. It also 

does not extrapolate beyond the training data, as discussed in detail in section 4.2.3. 

2.2.3 Artificial Neural Networks 

Artificial neural networks (ANN) consist of fully or partially connected neurons. A 

neuron is a single processing unit in a neural network. Connections are made between the 

neurons and weights assigned for the connections. Each of those neurons has inputs, an 
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2.2.4 Support Vector Regression 

Support vector regression (SVR) is a nonlinear regression technique built on top of 

the support vector machine technology [22]. Support vector regression uses quadratic 

programming to find the optimized margins (i.e., the margin that fits the data most 

accurately). SVR is easily implemented through the support vector machine library [23] 

and commonly used for energy demand forecasting [3, 13]. Like SVM, it is possible to 

select different kernel functions for SVR. Selection of a nonlinear kernel function allows 

modeling the nonlinearity as shown in(2.14), (2.15), and (2.16). The target is to minimize 
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2
w

 (2.13) 

subject to  

 ( ) ,ty w x bj= à + ð +$   (2.14) 

  ( ) ,i iy w x bj e- à + ð - <   (2.15) 

 ( ) ,i iw x b yj eà + ð + - <  (2.16) 

where Ů is the error boundary. This SVR is called Ů-SVR.  

Figure 2.5 shows an example of an Ů-SVR with a linear kernel function. This thesis 

uses Ů-SVR with nonlinear kernel functions to build nonlinear models. 
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Figure 2.5 – Support vector regressions 

Econometrics and statistical techniques are capable of building linear models. On 

the other hand, the machine learning techniques are suitable for modeling the nonlinearity. 

This thesis incorporates these techniques. The next chapter describes how these techniques 

are used in this thesis. 

2.3 Literature Review 

Econometrics and statistical models and machine learning forecasting techniques 

are presented in the previous two sections. This section provides a background on how 

these techniques are used by other researchers. This section also describes works that 

influence this thesis. This section contains two subsections. The first subsection describes 

previous works on model order searching of the autoregressive moving average (ARMA) 

models and autoregressive and moving average with exogenous inputs (ARMAX) models. 
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The second subsection describes the previous work done using machine learning 

techniques to build forecasting models. 

2.3.1 Previous Work on Searching for the Models 

This section describes the approaches that are used by other people to build 

forecasting models using econometrics and statistical modeling techniques. Building time 

series forecasting models requires three steps to be followed as shown in Figure 2.6, 

model detection, model order determination and model parameter estimation. 

  

 

Figure 2.6 – Searching time series forecasting model 

Literature searches have found significant research taking place to address the 

different steps of building of forecasting models. Among these three steps, the order 

estimation is the most important part, and a significant amount of previous work is 

available in this area. 

Box and Jenkins defined a modeling technique for building an ARMA model [1]. 

The method suggests using the autocorrelation and the partial autocorrelation values for 

determining the type and the orders of the time series model. This method can identify the 

order of the autoregressive (AR) and the moving average (MA) separately, but it is unable 

to determine the model orders of an ARMA model. 

Han-Fu and Zhao [33] proposed eigenvalue analysis of the covariance matrix to 

estimate the ARMA orders. The process is iterative. Thus, the technique is faster than 

other available techniques such as brute force search of information criteria value [5-8]. 

Model Type 
Determination 

Model Order 
Estimation 

Parameter 
Estimation 
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The technique is adaptive with new data. Thus, a recalculation is not necessary when the 

new data is available. This technique can be extended for exogenous inputs. This 

technique assumes that the roots for AR and MA parameters are within the unit circle and 

an upper bound for the orders is known. The eigenvalue analysis of covariance technique 

works successfully for AR2MA2. For higher orders, the estimated values are differing, 

and an order correction is needed.  

The literature search also found other techniques to discover the orders [34-37] and 

parameters [38, 39]. The article of Gang, Wilkes and Cadzow [35] analyze the effect of 

the ARMA root locations in pole zero diagrams and draw conclusions based on their 

analysis. A similar technique is followed in this thesis. Smadi and Wilkes [37] use a 

similar technique to discover higher ARMA orders. Many of these ARMA orders and 

parameter estimation techniques [34-37, 39] use eigenvalue analysis of the covariance 

matrix, and the technique can be extended to searches ARMAX model.  

The information minimization criteria techniques [5-8] are widely used for 

determining the model type and the orders. An information criterion is defined in the 

information theoretic as a measurement of the information loss. As the model building 

process involves generalization, there is a chance that, some sort of information is lost 

when the modeling process has taken place and it is required to know how much 

information is lost with the built model. The information criteria technique provides a 

mechanism to measure this information loss. Apart from representing the information loss, 

the information criteria value also represents the complexity of the model. Complexity of 

the model increases the information criteria value. The popular information minimization 

criteria include Akaike information criterion (AIC) [6], Corrected AIC (AICc) [5], 
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Bayesian information criterion (BIC) [7] and Hannan-Quinn information criterion (HQC) 

[8].  

The information minimization criteria techniques are commonly used to search for 

best model in the model space [40-42]. Thus, the information criteria technique is 

successfully applied in building forecasting models in different areas [42-44]. The 

available information criteria minimization technique suggests a brute force approach 

when searching the minimum information criteria value for the candidate models in the 

model space. This thesis presents a search-based approach that improves the 

computational performance of the brute force approach. The technique is discussed in the 

following chapter. 

2.3.2 Previous Works on the Machine Learning Techniques 

Machine learning techniques are widely used for the building the forecasting 

models [12, 13]. Literature searches have found the previous works where the machine 

learning techniques are used in combinations with the econometrics models. The results 

from different techniques are integrated to obtain better forecasting accuracy [3, 15]. For 

example, the hybridization of ARMA and intelligent techniques introduced by Valenzuela 

[4] uses the artificial neural network (ANN), genetic algorithms (GA) and the fuzzy logic 

with the ARMA model [3]. Two different approaches are suggested in the technique. The 

first approach uses the Box-Jenkins technique [1] and incorporates the fuzzy logic to allow 

the automatic learning of the model attributes. The second approach uses the ANN with 

ARMA models. This thesis uses an ensemble regression technique to combine the results 

obtained using different econometric and machine learning techniques. Details of the 

ensemble regression technique are provided in the following chapter. 
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The artificial neural network (ANN) [10, 45-48] and the regression tree (RT) [24, 

25] techniques also are widely used for forecasting modeling. This thesis uses the ANN 

and RT to build individual models and also to build input models. Details are provided in 

the following chapter. Recent work has shown that use of support vector regression can 

improve forecasting accuracy [9, 12, 14]. The seasonal decomposition techniques also 

improve the forecasting accuracy [12, 16]. The seasonal decomposition approach 

suggested by Shuhai [14] uses the support vector regression techniques to build 

forecasting models. The technique can model nonlinearities as well as the seasonality. The 

prediction problems are broken into smaller and simpler prediction sub-problems. These 

smaller sub-problems are solved using available forecasting techniques. The results are 

combined together, and the final forecasting result is obtained. The modeling seasonality 

technique presented in this thesis in the following chapter is motivated by the research 

work of Shuai [14]. 

The machine learning techniques are used for feature extraction [49, 50], input 

preprocessing [50, 51] and knowledge extraction [52, 53], because a nonlinear 

transformation of the input is needed for these, and the machine learning techniques are 

capable of performing this nonlinear transformation. This thesis uses both the machine 

learning and the econometrics techniques for preprocessing of the inputs and to extract 

information that can represent domain knowledge.  
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3 AUTOMATIC DISCOVERY OF TIME SERIES FORECASTING MODELS 

 

This chapter presents novel algorithms to automatically generate time series 

forecasting models for energy demand. To identify the model, the algorithms use 

statistical time series modeling and machine learning techniques. 

Automatic model discovery searches for the optimal time series forecasting model 

structure and parameters. The optimal forecasting model is the one that generates the 

minimum forecasting error among the candidate models. The first two sections in this 

chapter present statistical modeling techniques for searching for suitable autoregressive 

and moving average (ARMA) and autoregressive and moving average with exogenous 

inputs (ARMAX) models. The rest of the chapter deals with the application of machine 

learning techniques such as artificial neural networks (ANN), regression trees (RT), 

support vector regression (SVR) and ensemble learning. These techniques were introduced 

in chapter two. 

3.1 Discovery of ARMA Models 

The ARMA modeling technique commonly is used for energy demand forecasting 

because forecasted demand is highly correlated with the previous demands [54, 55]. Thus, 

ARMA is a good initial modeling technique for energy demand forecasting. However, 

ARMA modeling requires identification of the model orders and estimation of the 

parameter values.  

This thesis examines two approaches to the automatic discovery of ARMA 

models, the Box-Jenkins method [1] and the eigenvalue analysis of the covariance matrix 

approach [33]. While the Box-Jenkins method can identify correctly the orders of an 
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autoregressive (AR) or moving average (MA) model, it is unable to identify the orders of 

a joint ARMA model. The eigenvalue analysis of the covariance matrix [33] can correctly 

identify the orders of an ARMA model up to an AR2MA2, but it fails for higher order 

models. Thus a new approach is required for automatically finding the correct ARMA 

model orders and estimating the model’s parameters. 

This thesis presents an information theoretic approach for ARMA model order 

estimation, which yields more accurate order estimates than either the Box-Jenkins or the 

eigenvalue analysis of the covariance matrix approaches. The Bayesian information 

criterion (BIC) [7] is used to identify the ARMA model orders. An initial approach to 

using the BIC is the BRUTE-FORCE-BIC algorithm. BRUTE-FORCE-BIC searches for the 

model with the minimum BIC value. Figure 3.1 presents an example result of BRUTE-

FORCE-BIC for a one-dimensional AR order search. The example model is 

 -1 -2 -3 -4 -50.50 0.40 0.35 0.30 0.25t t t t t t tY Y Y Y Y Ye= + - + - + ,  (3.1) 

where tY is the forecasted value at time t, ande is a random variable normally distributed 

with zero mean and unit variance. 

The BIC value is calculated as  

 2ln( ) ln( ),BIC L k n= - +    (3.2) 

where k is the total number of model parameters, n is the total number of data points and L 

is the likelihood of the model. For the ARMA model, 

 1,k p r= + +  (3.3) 

where p and r are the ARMA orders. The likelihood of the model is  
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 ˆ ˆ ˆarg max ( | , , ),L P D cf q=  (3.4) 

where D is the observed data and f̂ , q̂  and ĉ  are the estimated ARMA parameters. 

Figure 3.1 shows BIC values from BRUTE-FORCE-BIC for AR orders one to 10. 

The data D is generated by simulating (3.1). BRUTE-FORCE-BIC finds the minimum BIC 

value of five, which is the correct order of (3.1). 

 

Figure 3.1 – Information criteria minimization to estimate AR order 

Similarly, the brute force search technique is applicable to the two dimensional 

space of AR and MA orders. The brute force algorithm is shown in Algorithm 3.1 –. 

 
BRUTE-FORCE-BIC (maxAROrder, maxMAOrder, timeSeries) 
minBIC Ŷ Ð 
arOrder Ŷ 0 
maOrder Ŷ 0 
for p = 1 to maxAROrder 
 for q = 1 to maxMAOrder 
  calculate BIC using (3.2) 
  if BIC < minBIC 
   minBIC = BIC 
   arOrder = p 
   maOrder = q 
return arOrder and maOrder 

Algorithm 3.1 – BRUTE-FORCE-BIC 

1 2 3 4 5 6 7 8 9 10
2.8

2.9

3

3.1

3.2

AR Order

BI
C 

Va
lu

e 
(1

00
0 

sc
al

e)



28 

The BRUTE-FORCE-BIC requires substantial computation time [33] because it 

searches for the model orders using all possible order values. BRUTE-FORCE-BIC requires 

the maximum estimated AR and MA orders to be known a priori. The calculation of the 

BIC value is ( )( )2O p q n³ ³ , where p and q are the AR and MA order, respectively, and n 

is the number of data points. Hence, choosing a large maximum order requires substantial 

computation time, whereas assuming a smaller order boundary may fail to find the correct 

orders because the actual orders are not examined. Although BRUTE-FORCE-BIC provides 

a better estimation of the actual ARMA orders than the Box-Jenkins [1] and the 

eigenvalue analysis of the covariance matrix [33] techniques, there are limitations caused 

by incorrectly selecting the maximum possible orders and performance issues involved 

with the order estimation process.  

This thesis presents a search-based algorithm that overcomes the limitations of the 

BRUTE-FORCE-BIC. The new algorithm, SEARCH-BASED-BIC, uses the monotonicity of 

the BIC with respect to the model orders. SEARCH-BASED-BIC finds the ARMA orders 

that minimizes the BIC. 

SEARCH-BASED-BIC starts with the candidate AR and MA orders of zero. The BIC 

value is calculated for the current candidate orders (i.e., AR order = 0 and MA order = 0). 

The algorithm also calculates the BIC value for the neighboring orders for a given box 

distance. For example, if the box distance is one, the algorithm calculates the BIC value 

for AR, MA order pairs AR1, MA1 and AR1MA1. Once the BIC values are calculated for 

all the neighbors, the order pair with minimum BIC is set as the candidate orders. If the 

previous candidate orders are found having the minimum BIC value, then the process 

stops, and the current candidate orders are used as the model orders. Otherwise, the 
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algorithm continues exploring the neighbors of the current candidate orders and moves to 

the neighbor that has the minimum BIC value.  

 
SEARCH-BASED-BIC (depth, timeSeries)  
minBIC Ŷ Ð 
arOrder Ŷ 0 
maOrder Ŷ 0 
while not (arOrder = prevAROrder and maOrder = prevMAOrder)  
 prevAROrder Ŷ arOrder 
 prevMAOrder Ŷ maOrder 
 for p = max(arOrder–depth, 0) to arOrder+depth  
  for q = max(maOrder–depth, 0) to maOrder+depth 
   calculate BIC using (3.2) 
   if BIC < minBIC 
    minBIC = BIC 
    arOrder = p 
    maOrder = q 
return arOrder and maOrder 

Algorithm 3.2 – SEARCH-BASED-BIC  

If the BIC is not strictly monotonic with respect to the model orders, SEARCH-

BASED-BIC may find a local minimum. For example, in Figure 3.1, the candidate order 

two has a smaller BIC value than the candidate order three. With depth one, the search 

would identify the order as two, which is incorrect. Thus, a search depth greater than one 

may be required. Empirically, we have found that for orders up to 10, a search depth of 

three avoids local minima. It is also found from the experiment that accuracy of 

forecasting does not differ significantly if the orders obtained by the search-based 

approach differ from the actual orders. Chapter four presents more details on this 

experiment.  

Figure 3.2 provides an example of SEARCH-BASED-BIC for finding the ARMA 

orders of the model  
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 -1 -2 -1 -20.5 - 0.4 - 0.5 - 0.4 ,t t t t t tY Y Ye e e= +  (3.5) 

where tY is the forecasted value at time t, ande  is random noise normally distributed with 

zero mean and unit variance. A synthetic dataset is constructed with 2000 points using the 

autoregressive model, which is representative to the energy demand dataset. There are 

additional components present in the energy demand dataset other than the autoregressive 

terms, but, those terms are not of interest for the demonstration of the BIC search 

technique and are considered as noise.  

In this example, the algorithm starts searching the ARMA model orders with the 

candidate AR order and the MA order as zero. The BIC value is calculated for the 

candidate model (i.e., AR0MA0). Step (a) in Figure 3.2 shows an initialization of the 

model orders and the BIC value calculation. In step (b), the algorithm calculates the BIC 

values for all neighbors (within the configured box distance value, which is one) model 

order pairs. A minimum value is found for the order pair (1, 1), so AR1MA1 is set as 

current candidate model in step (c). Similarly, in step (d), the BIC values are calculated for 

all neighboring order pairs. In step (e), the algorithm finds its current candidate model as 

AR2MA2. This process repeats until the current point is a local minimum BIC value 

compared to its surrounding BIC values. The algorithm ends at step (e) with AR2MA2 as 

the winning model. The cells in the tables contain the calculated corresponding 310-  BIC 

value.  
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Step (f) AR2MA2 has the final minimum BIC value 

Figure 3.2 – Search-based approach example 
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Figure 3.3 – Brute force search example 

Figure 3.3 illustrates the BRUTE-FORCE-BIC, which calculates BIC values for all 

possible candidate orders. In this example, the maximum AR and MA orders are set as 

five. Thus, a total of 25 BIC calculations are required by BRUTE-FORCE-BIC, whereas 

SEARCH-BASED-BIC requires only 14 BIC calculations and avoids the 11 most expensive 

BIC calculations.  

3.2 Discovery of ARMAX Models 

The ARMA modeling approach can be extended by adding exogenous terms 

yielding the ARMAX (Autoregressive moving average with exogenous inputs) modeling 

approach. The search-based approach is extended to discovering the ARMAX model by 

searching the product space of mp q r³ ³ , where p, q and r are the AR, MA and 

exogenous orders, respectively, and m is the number of exogenous input variables. The 

advantage of SEARCH-BASED-BIC in comparison BRUTE-FORCE-BIC is even more 

apparent in searching the higher order ARMAX space. This can be shown by analyzing 

the complexity of both BRUTE-FORCE-BIC and SEARCH-BASED-BIC. If the maximum 

order n is assumed for each of the AR, MA and exogenous, terms and m is the number of 
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exogenous variables, the BRUTE-FORCE-BIC requires ( )2mO n +  BIC calculations. In 

contrast, SEARCH-BASED-BIC requires ( ) ( )2 22 1 2m md d+ ++ -  BIC calculations, which is 

( )1mO d + , where d is the search depth. Since n is expected to be much greater than d, and 

typically d is a small constant, SEARCH-BASED-BIC is substantially faster than BRUTE-

FORCE-BIC.  

The extended algorithm for identifying the exogenous orders along with the 

ARMA orders is Search-Based-ARMAX-Orders. 

 
SEARCH-BASED-ARMAX-ORDERS (depthVector, orderDimension, timeSeries) 
minBIC Ŷ Ð 
orderVector Ŷ Array [size = orderDimension, value = 0]  
while not (orderVector = prevOrderVector)  
 prevOrderVector Ŷ orderVector 
 for each neighbor in  findNeighbor (orderVector, depthVector)  
  calculate BIC for neighbor using (3.2)  
  if BIC < minBIC 
   minBIC = BIC 
   orderVector = neighbor 
return orderVector 

Algorithm 3.3 – SEARCH-BASED-ARMAX-ORDERS  

Once the AR, MA and exogenous orders are known, the parameters are 

determined by the maximum likelihood parameter estimation technique [56]. Thus, an 

ARMAX model can be built automatically to forecast energy demand. The SEARCH-

BASED-ARMAX-ORDERS does not determine which exogenous terms should be used with 

the model, but this technique can be adapted to include an additional search option for 

dropping exogenous terms. 
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3.3 Incorporating Machine Learning Techniques 

The ARMAX model provides a good linear forecasting model. However, the 

forecast can be improved by incorporating nonlinearity into the model. Energy demand 

time series data is nonlinear by nature [13]. Learning of domain knowledge is also another 

important factor to have a robust model. Machine learning techniques are useful for 

representing the nonlinearity and for learning domain knowledge. To get further improved 

forecasting accuracy, this thesis examines machine learning techniques to create nonlinear 

forecasting models. These improved algorithms are discussed below. 

Figure 3.4 – ENSEMBLE-REGRESSION learning 

3.3.1 Ensemble Regression Learning 

Chapter two presented the application of machine learning techniques to forecast 

modeling. This thesis combines the forecasts made by different models using ENSEMBLE-

Ensemble Regression Technique 
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REGRESSION. This thesis uses a search-based approach to find the structure and parameters 

for the forecasting models. Forecasting results are obtained from time series forecasting 

modeling techniques such as ARMAX, linear regression (LR) and other machine learning 

techniques such as artificial neural network (ANN), support vector regression (SVR) and 

regression trees (RT). The forecasted results from all these techniques are combined 

together with the ENSEMBLE-REGRESSION technique as illustrated in Figure 3.4. 

The technique is represented as 

 ( )

1

ˆ ˆ ,
M

m
t m t

m
Y c Ya

=

= +ä  (3.6) 

where is the final estimated value, ( )ˆ m
tY  is the output from model m, c is the intercept and 

M is the total number of models. The ensemble regression algorithm works as follows 

ENSEMBLE-REGRESSION (modelCount, timeSeries) 
/* Training*/  
modelVector Ŷ Initialize with all available models  
outputVector Ŷ Array [size = modelCount, value = 0]  
for index = 1 to modelCount 
 outputVector[index] Ŷ mdoelVector[index].estimate(timeSeries)  
coeffVector Ŷ Array [size = modelCount, value = 0]  
[coeffVector, intercept] Ŷ learnModelCoefficient(timeSeries) 
 
/* Forecasting */  
forecastedValue Ŷ intercept 
for index = 1 to modelCount 
 forecastedValue Ŷ forecastedValue + outputVector[index]*coeffVector[index] 
return forecastedValue 

Algorithm 3.4 – ENSEMBLE-REGRESSION  

3.3.2 Input Modeling Technique 

Forecasting model inputs may be related to the output in either a linear or a 

nonlinear manner. The nonlinearity may vary from input to input. Modeling the nonlinear 
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relationship between input and output variable is expected to yield a better overall 

forecast. Figure 3.5 shows the input modeling techniques. 

Figure 3.5 – ENSEMBLE-REGRESSION with input modeling 

This technique includes two stage learning. In the first stage, a set of statistical and 

machine learning techniques are used for modeling the inputs. A specific group of 

candidate models are examined against different input types. The most appropriate model 

among the candidate models in a group is chosen for each individual input set. For 

example, different candidate autoregressive and moving average (ARMA) models are 

tested against the previous energy demand data. The most suitable ARMA model is 

chosen for modeling the previous energy demand input data. Similarly, the most 

appropriate regression tree (RT) model and artificial neural network (ANN) model is 

chosen for the weather inputs and the seasonal information, respectively. The energy 
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demand forecast output is generated from each of those selected models. The second stage 

contains an ensemble learner that combines the outputs from the first stage.  

The input modeling technique can be described mathemtically,  

 min{ 1: , ( )},i m m i
m

W m M Model xee« = =  (3.7) 

Finally,  

 
1

ˆ ,
I

t i i
i

Y c Wg
=

= +ä  (3.8) 

where t̂Y  is the final estimated value, iW  is the output from model m, c is the intercept, ig  

is the regression parameter for the ith model and M is the total number of models. The 

Equation (3.7) describes the technique of selecting a suitable model for an input. The input 

xi is tested with all available candidate models. The model that gives the minimum error Ů 

is chosen as the appropriate model for that input. The input modeling algorithm is 

presented below. 

Preprocessing of the inputs is not required in this technique because the machine 

learning models transform the inputs into the desired nonlinear forms. Hence, this 

technique is capable of learning where nonlinear transformations for the inputs are needed. 

Thus, learning of domain knowledge can be achieved by using this technique. 
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INPUT-MODELING (modelCount, inputCount, timeSeries) 
/* Training*/  
modelVector Ŷ Initialize with all available models  
selectedModelVector Ŷ Array [size = seasonCount, value = 0] 
inputVector Ŷ Array [size = inputCount, value = 0]  
for inputIndex = 1 to inputCount 
 minModelError Ŷ Ð 
 for modelIndex = 1 to modelCount 
  modelError Ŷ modelVector[modelIndex].estimate(timeSeries) 
  if modelError < minModelError 
   minModelError Ŷ modelError 
   selectedModelVector[inputIndex] Ŷ modelVector[modelIndex] 
 
outputVector Ŷ Array [size = inputCount, value = 0]  
for index = 1 to inputCount 
 outputVector [index] Ŷ selectedModelVector[index].estimate(timeSeries) 
coeffVector Ŷ Array [size = inputCount, value = 0]  
[coeffVector, intercept] Ŷ learnModelCoefficient(timeSeries, outputVector) 
 
/* Forecasting */  
forecastedValue Ŷ intercept 
for index = 1 to inputCount 
 output Ŷ selectedModelVector[index].estimate(timeSeries) 
 forecastedValue Ŷ forecastedValue + output *coeffVector[index] 
return forecastedValue 

Algorithm 3.5 – INPUT-MODELING 

3.3.3 Modeling Seasonality 

Energy demand data is highly influenced by the seasons [14, 16]. Figure 3.6 shows 

how the daily natural gas demand is changed based on the season. The figure shows the 

daily natural gas demand for a city in the U.S. Clearly, the trend in one season is different 

from the trend in another season. Hence, it is expected to get simpler and more precise 

models if the dataset is divided into smaller parts based on the seasons.  
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Figure 3.6 – Dividing the data based on seasons 

In this technique, the energy demand dataset is separated and divided into multiple 

datasets based on the seasonal or periodic characteristic (e.g., seasons, months, or days in 

a week). Each separated dataset is modeled individually using a model search technique. 

A model is selected based on the minimum error. The outcome of the model selection is 

used as training data for a set of artificial neural networks (ANN). The day of year and the 

temperature are used as inputs for the ANNs. Each of the ANNs decides a season in which 

a particular day belongs. The output from each seasonal model is then selected by the 

ANNs using majority voting ensemble learning technique. Figure 3.7 illustrates the 

technique. 

The number of seasons is an input for the modeling seasonality algorithm. To 

obtain better accuracy, a different number of seasons can be tested, and the one with the 

minimum error should be selected. Thus a ‘number of seasons can be determined’. This 

thesis uses three seasons as an example. 


