
AUTOMATION OF ENERGY DEMAND FORECASTING 
 

by 

Sanzad Siddique, B.S. 

 

A Thesis submitted to the Faculty of the Graduate School, 
Marquette University, 

in Partial Fulfillment of the Requirements for 
the Degree of Master of Science 

in 
Electrical and Computer Engineering 

 

Milwaukee, Wisconsin 

December 2013 
  



ABSTRACT 
AUTOMATION OF ENERGY DEMAND FORECASTING 

Sanzad Siddique, B.S. 

Marquette University, 2013 

Automation of energy demand forecasting saves time and effort by searching 
automatically for an appropriate model in a candidate model space without manual 
intervention. This thesis introduces a search-based approach that improves the 
performance of the model searching process for econometrics models. Further 
improvements in the accuracy of the energy demand forecasting are achieved by 
integrating nonlinear transformations within the models. This thesis introduces machine 
learning techniques that are capable of modeling such nonlinearity. Algorithms for 
learning domain knowledge from time series data using the machine learning methods are 
also presented. The novel search based approach and the machine learning models are 
tested with synthetic data as well as with natural gas and electricity demand signals. 
Experimental results show that the model searching technique is capable of finding an 
appropriate forecasting model. Further experimental results demonstrate an improved 
forecasting accuracy achieved by using the novel machine learning techniques introduced 
in this thesis. This thesis presents an analysis of how the machine learning techniques 
learn domain knowledge. The learned domain knowledge is used to improve the forecast 
accuracy. 
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1 INTRODUCTION 

Building forecasting models for energy demand is an active research field in 

engineering, statistics and econometrics. A literature review finds previous works that 

automate the process of determining the forecasting model attributes such as type, orders 

and parameters [1-8]. It is possible to build the forecasting model automatically with the 

help of existing econometrics techniques [1-3] and information minimization criteria 

techniques [5-8], but these techniques suffer from performance issues in terms of accuracy 

and speed, especially for the higher order models. Kavaklioglu [9], Azadeh [10, 11] and 

Oğcu [12] recently have applied machine learning approaches to learn forecasting model 

orders and parameters. The work of Valenzuela [4] is an example of integrating an 

automatic model discovery algorithm with domain knowledge. This thesis builds on the 

work of these authors. This thesis integrates machine learning and econometrics methods 

to create a novel approach to automatically learn forecasting model type, order and 

parameters. 

1.1 Problem Statement 

The forecasting model-building process manually searches the model space 

requiring significant time and effort. The model space consists of candidate models. A 

candidate model includes specifications of the model type, the model order and the model 

parameters. Having an automated process to construct the forecasting model by 

automatically searching the model space is a solution to this problem. The purpose of this 

thesis is to develop algorithms that contribute towards automating the process of building 

energy demand forecasting models. The algorithms introduced in this thesis automatically 
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search the space of candidate models. The model space includes statistical models such as 

autoregressive and moving average (ARMA) models, autoregressive and moving average 

with exogenous inputs (ARMAX) models and machine learning models such as artificial 

neural network (ANN), regression tree (RT) and support vector regression (SVR) models. 

An overview of the statistical models and machine learning techniques are presented in 

chapter two. The search algorithm also determines the model attributes such as structure, 

order and parameter values.  

1.2 Motivation for this work 

The process of energy demand estimation involves model identification, parameter 

estimation and prediction using the identified model. Generally, the complete model 

identification process is complex and requires substantial manual effort. The aim of this 

thesis is reduce the manual effort in building a model for energy demand forecasting. The 

contribution of this thesis is a set of novel techniques that contribute towards automation 

of energy demand forecasting model learning. Automatic energy demand forecasting 

model learning requires a process that performs all of the necessary steps of building a 

statistical forecasting model. The statistical forecasting model building steps include 

identifying the model type, the model structure, and the parameter values. 

Energy demand time series are nonlinear by nature [13]. Thus, recent work has 

applied nonlinear modeling techniques to energy demand forecasting [9-11]. Also, 

significant improvement in forecasting can be achieved by incorporating multiple 

forecasting techniques through hybridization [4, 14, 15] and by applying ensemble 

learning [14]. There are examples in the literature where nonlinear machine learning 
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methods are combined with linear models using ensemble techniques [3, 15]. This thesis 

extends this work by building ensembles of linear and nonlinear models.  

Accurate forecasting of energy demand requires domain knowledge. Domain 

knowledge may differ between the types of energy to be forecasted. When forecasting in 

new energy domains, it is likely that there insufficient domain knowledge to build an 

accurate forecasting model. Thus, this thesis proposes an algorithm that can extract 

domain knowledge from the energy demand signals. A nonlinear technique typically is 

needed for the representation of domain knowledge [4]. Machine learning techniques are 

incorporated into the overall process to facilitate learning of domain knowledge. The 

models proposed by this thesis incorporate domain knowledge learning mechanisms. 

Seasonal decomposition of energy demand provides reasonable results [14, 16, 

17]. This thesis proposes and examines techniques based on the seasonal decomposition 

and combination of the results from the models built on the decomposed datasets. 

1.3 Scope of the Work 

Energy demand is usually forecasted for long term, midterm and short term [18]. 

Long term forecasting helps make strategic decisions. Midterm forecasting is used for 

managing resources. Short term energy demand forecasting reduces excess energy 

generation, blackouts and negative economic impact [19, 20]. This thesis introduces 

techniques that can automate short term energy demand forecasting. However, the 

techniques introduced by this thesis may help midterm and long term forecasting as well. 

Techniques introduced by this thesis are for forecasting the energy demand. It may 

be possible to apply the technology proposed in this thesis to other areas, but other 

applications are not examined here. The proposed algorithms are built and tested with 
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energy demand data. Moreover, the methods are tested exclusively on natural gas and 

electricity demand.  

 

Figure 1.1 – Context of the work 

An energy demand forecasting automation process is shown in Figure 1.1. The 

process starts with data cleaning. The candidate models from the model space are 

examined using the cleaned data. The forecasting problem, the business models and 

domain knowledge are used in the data cleaning and in the model searching processes. 

The selected models are used for forecasting the energy demand. The error is analyzed, 

and necessary changes are made in the data cleaning and the model searching processes. 

The data cleaning and the business model are not in the scope of this thesis. The thesis 
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assumes that the data is clean and without anomalous data. This thesis focuses on the 

model search. 

1.4 Summary of the Work  

The presentation of this work starts by explaining simpler models and then extends 

the work towards more complex models. Time series that follow the ARMA model are 

presented first. The initial goal is to automate the process of finding a model among AR, 

MA or combined (ARMA) models with optimal orders and parameters. The automated 

process is done in several phases. The ARMA model identification involves two main 

steps: order identification and parameter estimation. The proposed research develops 

methods for finding the most appropriate model order. As there are different techniques 

available, the various techniques are tested and analyzed. Among these techniques, the 

Bayesian information criteria (BIC) technique determines the model orders most 

accurately. This thesis presents a search-based approach that overcomes the poor 

computational performance of a brute force BIC search. The search-based ARMA model 

discovery technique is extended to the discovery of the autoregressive and moving 

average with the exogenous inputs (ARMAX) model.  

Besides linear components, energy demand time series data contains nonlinear and 

seasonal components [13]. Thus, it is desirable to improve forecasting accuracy by 

combining the linear models, such as ARMA and ARMAX, with nonlinear techniques and 

by considering the seasonal nature of the energy demand. Machine learning techniques 

such as ensemble learning [21], support vector regression [22, 23], artificial neural 

networks [10-12, 20] and regression trees [24, 25] are used widely for building nonlinear 

forecasting models. This thesis uses these techniques for modeling the nonlinearity of the 
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underlying system and also to learn model dimensions and parameter values. Furthermore, 

improvement in forecasting accuracy can be achieved by incorporating multiple 

forecasting techniques such as hybridization [4, 14, 15] and ensemble learning [14]. This 

thesis suggests several ensemble learning methods that can forecast the energy demand 

accurately and automatically.  

The first method, ENSEMBLE-REGRESSION, integrates the result from other 

statistical and machine learning techniques such as autoregressive and moving average 

with exogenous inputs (ARMAX), support vector regression (SVR), artificial neural 

networks (ANN) and regression trees (RT). Initially, energy demand is forecasted using 

those techniques. The results from each of those techniques are combined with the 

ensemble learning technique.  

The second method, INPUT-MODELING, uses linear statistical modeling techniques 

and nonlinear machine learning techniques to model different sets of inputs. Those models 

are combined using the ensemble technique. The final forecasting result is obtained from 

the ensemble technique. The third method also performs input modeling, but uses residual 

instead of the actual demand data.  

The third technique, MODELING-SEASONALITY, models the energy demand based 

on seasons. Some of the previous research works represent the decomposition of energy 

demand time series data based on the seasonal information [4, 14]. The decomposed data 

then is estimated using forecasting modeling techniques and then combined using the 

ensemble learning technique. Using these ideas, the energy demand time series data is 

partitioned into seasons. The separate seasonal datasets are modeled individually. Outputs 
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from the individual models are combined using an ensembler. The final forecasted value is 

obtained from the ensemble output. 

1.5 Summary of Contributions 

The novel techniques proposed by this thesis are tested, and the test results are 

obtained. The test results show the accuracy and the performance improved by these 

techniques. The search-based algorithm is tested to estimate the orders of the econometrics 

models, including the autoregressive and moving average (ARMA), autoregressive with 

exogenous input (ARX) and the autoregressive and moving average with exogenous input 

(ARMAX) model. The three novel machine learning techniques are also tested, and the 

results are compared with the standard modeling techniques. The search-based approach 

show improved computational performance, and the machine learning techniques show 

improved accuracy.  

1.6 Organization of the Thesis 

This thesis contains five chapters. The first chapter provides an introduction to the 

thesis. The second chapter provides an overview on the forecasting techniques. The first 

section of the second chapter describes statistical and econometrics time series modeling 

techniques such as autoregressive (AR), moving average (MA), autoregressive with 

exogenous inputs (ARX), autoregressive and moving average (ARMA), autoregressive 

and moving average with exogenous inputs (ARMAX) and linear regression (LR). The 

second section in chapter two provides an overview of machine learning techniques such 

as artificial neural networks (ANN), regression trees (RT), support vector regression 

(SVR) and ensemble learning.  
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Chapter three introduces four novel techniques and algorithms. The first two 

sections of chapter three describe econometrics and statistical modeling techniques 

proposed by this thesis. The third section describes the new machine learning and hybrid 

techniques.  

Chapter four describes the training and testing methods. The results are 

represented and analyzed in chapter four. Chapter five provides conclusions and 

suggestions for future work. 
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2 OVERVIEW OF FORECASTING TECHNIQUES 

 

This chapter describes various forecasting techniques on which this thesis is based. 

These forecasting techniques include statistical and econometric models and machine 

learning techniques. The first section of this chapter describes the statistical and 

econometrics forecasting techniques. The second section describes various machine 

learning techniques used in this thesis. The third section presents the literature review of 

these techniques. The previous works in the relevant area are discussed in this section. 

2.1 Statistical and Econometric Models 

Many statistical and econometrics modeling techniques are available for 

forecasting time series data. These methods successfully forecast in many different areas 

such as financial [26], weather [27], energy [28] and household devices [29]. Hence, the 

methods are widely accepted. Forecasting modeling techniques include autoregressive 

(AR), autoregressive and moving average (ARMA), autoregressive moving average with 

exogenous input (ARMAX) and linear regression (LR). This section reviews these 

techniques. 

2.1.1 Autoregressive Model 

Autoregressive (AR) models are useful when the value to be forecasted is 

correlated to the previous values in the time series. The AR model is  

 1 1 2 2 ..... ,t t t t p t pY c Y Y Y            (2.1) 

where tY indicates the time series value at time t, and t iY  indicates the value recorded at 

time t-i. The φ’s represent the AR coefficients, where φi is the coefficient for t iY  . 
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Additional terms include a constant value c and a time-dependent normal random variable

t . Equation (2.1) is rewritten as 

 
1

,
p

t t i t i
i

Y c Y  


    (2.2) 

where p represents the number of previous time series values to be incorporated into the 

model. This variable p is known as AR model order. 

2.1.2 Moving Average Model 

Moving average (MA) models are constructed by calculating the running average 

of the error generated at each point of time. Generally, the average values are weighted. 

The moving average model has the form 

 1 -1 2 -2 -..... ,           t t t t q t qY c  (2.3) 

where tY is the forecasted value at time t, which is a weighted average of the error at 

previous instances of time. The   values are the coefficients of the moving average 

terms. Equation (2.3) is rewritten as 

 
1

,
q

t t j t j
j

Y c    


    (2.4) 

where q, representing the number of previous error terms in the model, is known as the 

MA model order. 

2.1.3 Autoregressive and Moving Average Model 

An autoregressive and moving average (ARMA) model combines both 

autoregressive and moving average terms. It is one of the most commonly used 
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order, ηi is the parameter of the exogenous input at time i and t is a time-dependent 

random value that represents model error. 

2.1.5 Autoregressive Moving Average with Exogenous Input Model  

The autoregressive moving average with exogenous input (ARMAX) model is an 

extension of the ARMA model. It is similar to the ARX model with the additional moving 

average terms. The ARMAX model is  

 
1 1 0

,      
  

      
p q b

t i t i t j t j i t i
i j i

Y c Y d  (2.8) 

where tY is the forecasted value at time t, c is a constant, p is the autoregressive orders, q is 

the moving average order, φ’s are the autoregressive parameters, θ’s are the moving 

average parameters, d is the exogenous inputs, b is the exogenous input order, ηi is the 

parameter of the exogenous input at time i and εt is random model error. Equation (2.8) is 

similar to Equation (2.7) for the ARX model, but with added moving average component, 

where the θ’s are the moving average parameters, and q is the MA order. 

2.1.6 Linear Regression Model 

Linear regression (LR) models represent the relationship between a set of 

independent variables and a dependent variable. The dependent variable is correlated with 

each of the independent variables. The relationship is represented as  

 1 1 2 2 ... ,t n nY c x x x        (2.9) 

where Yt is the dependent variable and 1 2, ,..., nx x x  are the independent variables. Each of 

these independent variables has a linear relationship with the dependent variable Y. The 
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symbols 1 2, ,...., n    represent the coefficients for respective independependent variables 

and are known as the parameters of the linear regression model. Variable c represents a 

constant offset. Equation (2.9) is rewritten as 

 ,t tY c αX  (2.10) 

where 1 2[ , ,...., ]n  α  and 1 2[ , , ..., ]T
t nx x xX . 

2.2 Machine Learning Techniques 

Besides econometrics, statistical modeling and regression techniques, it is possible 

to incorporate machine learning techniques to forecast a time series. Machine learning 

techniques can be used for input selection and for learning the model dimension and 

parameters. It is possible to incorporate machine learning techniques with existing 

statistical and econometrics modeling techniques and to combine the results using an 

ensembler. Besides building the forecasting model by learning the model dimensions and 

parameters, it is possible to acquire domain knowledge for a particular area and apply it to 

different domain. Thus, machine learning techniques are capable of translating domain 

knowledge and are able to provide equivalent accuracy in forecasting without having 

complete domain knowledge compared to the accuracy obtainable by having domain 

knowledge.  

Many machine learning techniques solve classification problems, but machine 

learning techniques also can be applied to regression problems. This section describes the 

machine learning techniques used in this thesis including ensemble learning, regression 

trees (RT), artificial neural networks (ANN) and support vector regressions (SVR). 
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2.2.1 Ensemble Learning 

Ensemble learning combines results from other learners to provide a summary of 

results. Ensemble learners are used for classification [21] and regression [30, 31] 

problems. This thesis uses both the classification and regression ensemble techniques. The 

techniques are discussed in turn. 

2.2.1.1 Majority Voting Ensemble 

Majority voting treats each member (output from other machine learning 

techniques) equally and selects one output as a winner. The winner is the output chosen by 

the majority of the members. Thus, majority voting is the simplest ensembler and does not 

require model parameter learning. The result is obtained once the outputs from all 

members are available. This thesis uses the majority voting technique for selecting the 

forecasted value from more than one model output.  

2.2.1.2 Ensemble Regression Algorithm 

While majority voting selects a single output, ENSEMBLE-REGRESSION uses the 

outputs from all of the component models in determining the final output. ENSEMBLE-

REGRESSION nonlinearly transforms the component model outputs and learns weights for 

each of the transformed outputs. If component model outputs were not transformed, 

ENSEMBLE-REGRESSION would be equivalent to linear regression, where the component 

model outputs are independent variables, and the weights are regression parameters. 

ENSEMBLE-REGRESSION combines the outputs from different modeling techniques. 
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Figure 2.1 – ENSEMBLE-REGRESSION 

Figure 2.1 represents ENSEMBLE-REGRESSION, where outputs from N forecasting 

techniques are combined using linear regression using a least square regression method 

[32]. The output from the individual component techniques can be transformed 

individually and nonlinearly before the regression.  

2.2.2 Regression Tree 

A regression tree is a special form of a binary decision tree used for building nonlinear 

regression models. A binary decision tree is a machine learning technique used for the 

classification, and a regression tree is used for regression. Like a binary decision tree, the 

decision nodes in a regression tree represent a decision based on the value of a given 

attribute. The leaves of the tree are learned using the forecasted values. There are fast and 

reliable algorithms available to learn the nodes and leaves [24]. Regression trees are used 

for forecasting [24, 25]. An advantage of using a regression tree is that it can forecast very 

quickly. Figure 2.2 shows an example of a regression tree. In this example, the inputs have 
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four different attributes such as x1, x2, x3 and x4. Each internal node represents a condition 

on one these attributes. The leaves contain the output values (i.e., values for Y). Once the 

complete regression tree is learned, an input is examined at the top node and is followed to 

the child nodes until a leaf is reached. The selected leaf represents the corresponding 

output for the given input. This thesis uses the regression tree to build a hybrid forecasting 

model, which is described in chapter three.  

 

Figure 2.2 – Example regression tree 

The regression tree can model a continuous variable, but as discrete values. It also 

does not extrapolate beyond the training data, as discussed in detail in section 4.2.3. 

2.2.3 Artificial Neural Networks 

Artificial neural networks (ANN) consist of fully or partially connected neurons. A 

neuron is a single processing unit in a neural network. Connections are made between the 

neurons and weights assigned for the connections. Each of those neurons has inputs, an 
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activation function and outputs. A weight is associated with each of the inputs. The output 

is calculated by summing the weighted inputs and a bias value. The calculated output is 

processed by an activation function, and the final output is generated. The calculation 

taking place in a single neuron is  

 
1

0
1

,
n

i i
i

y f b w x




 
  

 
  (2.11) 

where x represents the input vector, y is the output, w is the weight vector, b0 is the bias 

and  0 , ,f b w x  is the activation function. The activation function performs a 

transformation on the result. Most commonly, a sigmoid function is used as an activation 

function, 

 1( ) .
1 
 xf x

e
  (2.12) 

Figure 2.3 – Representation of a single node neuron 

A single neuron of a neural network is shown in Figure 2.3. A single neuron works 

satisfactoraly only for linearly separable inputs. To support nonlinearity, a neural network 
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with more than one neuron is needed. Neural networks can have multiple layers, where 

each of the layers consists of one or more neurons. The neurons from one layer are 

connected to the adjacent layer neurons. A multilayer neural network contains an input 

layer, an output layer and one or more hidden layers, as suggested by Figure 2.4. 

 

Figure 2.4 – Multilayer neural network 

Figure 2.4 shows a multilayer feed-forward artificial neural network. A multilayer 

artificial neural network consists of fully or partially connected neurons and often can 

perform as an effective nonlinear model. The weight of the connections between the 

neurons can be learned using a suitable training algorithm. ANNs are used widely for 

energy demand forecasting [2, 10, 12]. This thesis uses an artificial neural network to 

build nonlinear forecasting models. 

Input Layer Hidden Layer Output Layer

Input-1 

OutputInput-2 

Input-3 
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2.2.4 Support Vector Regression 

Support vector regression (SVR) is a nonlinear regression technique built on top of 

the support vector machine technology [22]. Support vector regression uses quadratic 

programming to find the optimized margins (i.e., the margin that fits the data most 

accurately). SVR is easily implemented through the support vector machine library [23] 

and commonly used for energy demand forecasting [3, 13]. Like SVM, it is possible to 

select different kernel functions for SVR. Selection of a nonlinear kernel function allows 

modeling the nonlinearity as shown in(2.14), (2.15), and (2.16). The target is to minimize 
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2
w

 (2.13) 

subject to  

 ( ) ,ty w x b       (2.14) 

  ( ) ,i iy w x b         (2.15) 

 ( ) ,i iw x b y        (2.16) 

where ε is the error boundary. This SVR is called ε-SVR.  

Figure 2.5 shows an example of an ε-SVR with a linear kernel function. This thesis 

uses ε-SVR with nonlinear kernel functions to build nonlinear models. 
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Figure 2.5 – Support vector regressions 

Econometrics and statistical techniques are capable of building linear models. On 

the other hand, the machine learning techniques are suitable for modeling the nonlinearity. 

This thesis incorporates these techniques. The next chapter describes how these techniques 

are used in this thesis. 

2.3 Literature Review 

Econometrics and statistical models and machine learning forecasting techniques 

are presented in the previous two sections. This section provides a background on how 

these techniques are used by other researchers. This section also describes works that 

influence this thesis. This section contains two subsections. The first subsection describes 

previous works on model order searching of the autoregressive moving average (ARMA) 

models and autoregressive and moving average with exogenous inputs (ARMAX) models. 



21 

The second subsection describes the previous work done using machine learning 

techniques to build forecasting models. 

2.3.1 Previous Work on Searching for the Models 

This section describes the approaches that are used by other people to build 

forecasting models using econometrics and statistical modeling techniques. Building time 

series forecasting models requires three steps to be followed as shown in Figure 2.6, 

model detection, model order determination and model parameter estimation. 

  

 

Figure 2.6 – Searching time series forecasting model 

Literature searches have found significant research taking place to address the 

different steps of building of forecasting models. Among these three steps, the order 

estimation is the most important part, and a significant amount of previous work is 

available in this area. 

Box and Jenkins defined a modeling technique for building an ARMA model [1]. 

The method suggests using the autocorrelation and the partial autocorrelation values for 

determining the type and the orders of the time series model. This method can identify the 

order of the autoregressive (AR) and the moving average (MA) separately, but it is unable 

to determine the model orders of an ARMA model. 

Han-Fu and Zhao [33] proposed eigenvalue analysis of the covariance matrix to 

estimate the ARMA orders. The process is iterative. Thus, the technique is faster than 

other available techniques such as brute force search of information criteria value [5-8]. 
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The technique is adaptive with new data. Thus, a recalculation is not necessary when the 

new data is available. This technique can be extended for exogenous inputs. This 

technique assumes that the roots for AR and MA parameters are within the unit circle and 

an upper bound for the orders is known. The eigenvalue analysis of covariance technique 

works successfully for AR2MA2. For higher orders, the estimated values are differing, 

and an order correction is needed.  

The literature search also found other techniques to discover the orders [34-37] and 

parameters [38, 39]. The article of Gang, Wilkes and Cadzow [35] analyze the effect of 

the ARMA root locations in pole zero diagrams and draw conclusions based on their 

analysis. A similar technique is followed in this thesis. Smadi and Wilkes [37] use a 

similar technique to discover higher ARMA orders. Many of these ARMA orders and 

parameter estimation techniques [34-37, 39] use eigenvalue analysis of the covariance 

matrix, and the technique can be extended to searches ARMAX model.  

The information minimization criteria techniques [5-8] are widely used for 

determining the model type and the orders. An information criterion is defined in the 

information theoretic as a measurement of the information loss. As the model building 

process involves generalization, there is a chance that, some sort of information is lost 

when the modeling process has taken place and it is required to know how much 

information is lost with the built model. The information criteria technique provides a 

mechanism to measure this information loss. Apart from representing the information loss, 

the information criteria value also represents the complexity of the model. Complexity of 

the model increases the information criteria value. The popular information minimization 

criteria include Akaike information criterion (AIC) [6], Corrected AIC (AICc) [5], 
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Bayesian information criterion (BIC) [7] and Hannan-Quinn information criterion (HQC) 

[8].  

The information minimization criteria techniques are commonly used to search for 

best model in the model space [40-42]. Thus, the information criteria technique is 

successfully applied in building forecasting models in different areas [42-44]. The 

available information criteria minimization technique suggests a brute force approach 

when searching the minimum information criteria value for the candidate models in the 

model space. This thesis presents a search-based approach that improves the 

computational performance of the brute force approach. The technique is discussed in the 

following chapter. 

2.3.2 Previous Works on the Machine Learning Techniques 

Machine learning techniques are widely used for the building the forecasting 

models [12, 13]. Literature searches have found the previous works where the machine 

learning techniques are used in combinations with the econometrics models. The results 

from different techniques are integrated to obtain better forecasting accuracy [3, 15]. For 

example, the hybridization of ARMA and intelligent techniques introduced by Valenzuela 

[4] uses the artificial neural network (ANN), genetic algorithms (GA) and the fuzzy logic 

with the ARMA model [3]. Two different approaches are suggested in the technique. The 

first approach uses the Box-Jenkins technique [1] and incorporates the fuzzy logic to allow 

the automatic learning of the model attributes. The second approach uses the ANN with 

ARMA models. This thesis uses an ensemble regression technique to combine the results 

obtained using different econometric and machine learning techniques. Details of the 

ensemble regression technique are provided in the following chapter. 
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The artificial neural network (ANN) [10, 45-48] and the regression tree (RT) [24, 

25] techniques also are widely used for forecasting modeling. This thesis uses the ANN 

and RT to build individual models and also to build input models. Details are provided in 

the following chapter. Recent work has shown that use of support vector regression can 

improve forecasting accuracy [9, 12, 14]. The seasonal decomposition techniques also 

improve the forecasting accuracy [12, 16]. The seasonal decomposition approach 

suggested by Shuhai [14] uses the support vector regression techniques to build 

forecasting models. The technique can model nonlinearities as well as the seasonality. The 

prediction problems are broken into smaller and simpler prediction sub-problems. These 

smaller sub-problems are solved using available forecasting techniques. The results are 

combined together, and the final forecasting result is obtained. The modeling seasonality 

technique presented in this thesis in the following chapter is motivated by the research 

work of Shuai [14]. 

The machine learning techniques are used for feature extraction [49, 50], input 

preprocessing [50, 51] and knowledge extraction [52, 53], because a nonlinear 

transformation of the input is needed for these, and the machine learning techniques are 

capable of performing this nonlinear transformation. This thesis uses both the machine 

learning and the econometrics techniques for preprocessing of the inputs and to extract 

information that can represent domain knowledge.  
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3 AUTOMATIC DISCOVERY OF TIME SERIES FORECASTING MODELS 

 

This chapter presents novel algorithms to automatically generate time series 

forecasting models for energy demand. To identify the model, the algorithms use 

statistical time series modeling and machine learning techniques. 

Automatic model discovery searches for the optimal time series forecasting model 

structure and parameters. The optimal forecasting model is the one that generates the 

minimum forecasting error among the candidate models. The first two sections in this 

chapter present statistical modeling techniques for searching for suitable autoregressive 

and moving average (ARMA) and autoregressive and moving average with exogenous 

inputs (ARMAX) models. The rest of the chapter deals with the application of machine 

learning techniques such as artificial neural networks (ANN), regression trees (RT), 

support vector regression (SVR) and ensemble learning. These techniques were introduced 

in chapter two. 

3.1 Discovery of ARMA Models 

The ARMA modeling technique commonly is used for energy demand forecasting 

because forecasted demand is highly correlated with the previous demands [54, 55]. Thus, 

ARMA is a good initial modeling technique for energy demand forecasting. However, 

ARMA modeling requires identification of the model orders and estimation of the 

parameter values.  

This thesis examines two approaches to the automatic discovery of ARMA 

models, the Box-Jenkins method [1] and the eigenvalue analysis of the covariance matrix 

approach [33]. While the Box-Jenkins method can identify correctly the orders of an 
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autoregressive (AR) or moving average (MA) model, it is unable to identify the orders of 

a joint ARMA model. The eigenvalue analysis of the covariance matrix [33] can correctly 

identify the orders of an ARMA model up to an AR2MA2, but it fails for higher order 

models. Thus a new approach is required for automatically finding the correct ARMA 

model orders and estimating the model’s parameters. 

This thesis presents an information theoretic approach for ARMA model order 

estimation, which yields more accurate order estimates than either the Box-Jenkins or the 

eigenvalue analysis of the covariance matrix approaches. The Bayesian information 

criterion (BIC) [7] is used to identify the ARMA model orders. An initial approach to 

using the BIC is the BRUTE-FORCE-BIC algorithm. BRUTE-FORCE-BIC searches for the 

model with the minimum BIC value. Figure 3.1 presents an example result of BRUTE-

FORCE-BIC for a one-dimensional AR order search. The example model is 

 -1 -2 -3 -4 -50.50 0.40 0.35 0.30 0.25t t t t t t tY Y Y Y Y Y      ,  (3.1) 

where tY is the forecasted value at time t, and is a random variable normally distributed 

with zero mean and unit variance. 

The BIC value is calculated as  

 2ln( ) ln( ),BIC L k n      (3.2) 

where k is the total number of model parameters, n is the total number of data points and L 

is the likelihood of the model. For the ARMA model, 

 1,k p r    (3.3) 

where p and r are the ARMA orders. The likelihood of the model is  
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 1,k p r    (3.3) 

where p and r are the ARMA orders. The likelihood of the model is  
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 ˆ ˆ ˆarg max ( | , , ),L P D c   (3.4) 

where D is the observed data and ̂ , ̂  and ĉ  are the estimated ARMA parameters. 

Figure 3.1 shows BIC values from BRUTE-FORCE-BIC for AR orders one to 10. 

The data D is generated by simulating (3.1). BRUTE-FORCE-BIC finds the minimum BIC 

value of five, which is the correct order of (3.1). 

 

Figure 3.1 – Information criteria minimization to estimate AR order 

Similarly, the brute force search technique is applicable to the two dimensional 

space of AR and MA orders. The brute force algorithm is shown in Algorithm 3.1 –. 

 
BRUTE-FORCE-BIC (maxAROrder, maxMAOrder, timeSeries) 
minBIC ← ∞ 
arOrder ← 0 
maOrder ← 0 
for p = 1 to maxAROrder 
 for q = 1 to maxMAOrder 
  calculate BIC using (3.2) 
  if BIC < minBIC 
   minBIC = BIC 
   arOrder = p 
   maOrder = q 
return arOrder and maOrder 

Algorithm 3.1 – BRUTE-FORCE-BIC 
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The BRUTE-FORCE-BIC requires substantial computation time [33] because it 

searches for the model orders using all possible order values. BRUTE-FORCE-BIC requires 

the maximum estimated AR and MA orders to be known a priori. The calculation of the 

BIC value is   2O p q n  , where p and q are the AR and MA order, respectively, and n 

is the number of data points. Hence, choosing a large maximum order requires substantial 

computation time, whereas assuming a smaller order boundary may fail to find the correct 

orders because the actual orders are not examined. Although BRUTE-FORCE-BIC provides 

a better estimation of the actual ARMA orders than the Box-Jenkins [1] and the 

eigenvalue analysis of the covariance matrix [33] techniques, there are limitations caused 

by incorrectly selecting the maximum possible orders and performance issues involved 

with the order estimation process.  

This thesis presents a search-based algorithm that overcomes the limitations of the 

BRUTE-FORCE-BIC. The new algorithm, SEARCH-BASED-BIC, uses the monotonicity of 

the BIC with respect to the model orders. SEARCH-BASED-BIC finds the ARMA orders 

that minimizes the BIC. 

SEARCH-BASED-BIC starts with the candidate AR and MA orders of zero. The BIC 

value is calculated for the current candidate orders (i.e., AR order = 0 and MA order = 0). 

The algorithm also calculates the BIC value for the neighboring orders for a given box 

distance. For example, if the box distance is one, the algorithm calculates the BIC value 

for AR, MA order pairs AR1, MA1 and AR1MA1. Once the BIC values are calculated for 

all the neighbors, the order pair with minimum BIC is set as the candidate orders. If the 

previous candidate orders are found having the minimum BIC value, then the process 

stops, and the current candidate orders are used as the model orders. Otherwise, the 
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algorithm continues exploring the neighbors of the current candidate orders and moves to 

the neighbor that has the minimum BIC value.  

 
SEARCH-BASED-BIC (depth, timeSeries)  
minBIC ← ∞ 
arOrder ← 0 
maOrder ← 0 
while not (arOrder = prevAROrder and maOrder = prevMAOrder)  
 prevAROrder ← arOrder 
 prevMAOrder ← maOrder 
 for p = max(arOrder–depth, 0) to arOrder+depth  
  for q = max(maOrder–depth, 0) to maOrder+depth 
   calculate BIC using (3.2) 
   if BIC < minBIC 
    minBIC = BIC 
    arOrder = p 
    maOrder = q 
return arOrder and maOrder 

Algorithm 3.2 – SEARCH-BASED-BIC  

If the BIC is not strictly monotonic with respect to the model orders, SEARCH-

BASED-BIC may find a local minimum. For example, in Figure 3.1, the candidate order 

two has a smaller BIC value than the candidate order three. With depth one, the search 

would identify the order as two, which is incorrect. Thus, a search depth greater than one 

may be required. Empirically, we have found that for orders up to 10, a search depth of 

three avoids local minima. It is also found from the experiment that accuracy of 

forecasting does not differ significantly if the orders obtained by the search-based 

approach differ from the actual orders. Chapter four presents more details on this 

experiment.  

Figure 3.2 provides an example of SEARCH-BASED-BIC for finding the ARMA 

orders of the model  
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 -1 -2 -1 -20.5 - 0.4 - 0.5 - 0.4 ,t t t t t tY Y Y     (3.5) 

where tY is the forecasted value at time t, and  is random noise normally distributed with 

zero mean and unit variance. A synthetic dataset is constructed with 2000 points using the 

autoregressive model, which is representative to the energy demand dataset. There are 

additional components present in the energy demand dataset other than the autoregressive 

terms, but, those terms are not of interest for the demonstration of the BIC search 

technique and are considered as noise.  

In this example, the algorithm starts searching the ARMA model orders with the 

candidate AR order and the MA order as zero. The BIC value is calculated for the 

candidate model (i.e., AR0MA0). Step (a) in Figure 3.2 shows an initialization of the 

model orders and the BIC value calculation. In step (b), the algorithm calculates the BIC 

values for all neighbors (within the configured box distance value, which is one) model 

order pairs. A minimum value is found for the order pair (1, 1), so AR1MA1 is set as 

current candidate model in step (c). Similarly, in step (d), the BIC values are calculated for 

all neighboring order pairs. In step (e), the algorithm finds its current candidate model as 

AR2MA2. This process repeats until the current point is a local minimum BIC value 

compared to its surrounding BIC values. The algorithm ends at step (e) with AR2MA2 as 

the winning model. The cells in the tables contain the calculated corresponding 310  BIC 

value.  
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Figure 3.2 – Search-based approach example 
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Figure 3.3 – Brute force search example 

Figure 3.3 illustrates the BRUTE-FORCE-BIC, which calculates BIC values for all 

possible candidate orders. In this example, the maximum AR and MA orders are set as 

five. Thus, a total of 25 BIC calculations are required by BRUTE-FORCE-BIC, whereas 

SEARCH-BASED-BIC requires only 14 BIC calculations and avoids the 11 most expensive 

BIC calculations.  

3.2 Discovery of ARMAX Models 

The ARMA modeling approach can be extended by adding exogenous terms 

yielding the ARMAX (Autoregressive moving average with exogenous inputs) modeling 

approach. The search-based approach is extended to discovering the ARMAX model by 

searching the product space of mp q r  , where p, q and r are the AR, MA and 

exogenous orders, respectively, and m is the number of exogenous input variables. The 

advantage of SEARCH-BASED-BIC in comparison BRUTE-FORCE-BIC is even more 

apparent in searching the higher order ARMAX space. This can be shown by analyzing 

the complexity of both BRUTE-FORCE-BIC and SEARCH-BASED-BIC. If the maximum 

order n is assumed for each of the AR, MA and exogenous, terms and m is the number of 
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exogenous variables, the BRUTE-FORCE-BIC requires  2mO n   BIC calculations. In 

contrast, SEARCH-BASED-BIC requires    2 22 1 2m md d    BIC calculations, which is 

 1mO d  , where d is the search depth. Since n is expected to be much greater than d, and 

typically d is a small constant, SEARCH-BASED-BIC is substantially faster than BRUTE-

FORCE-BIC.  

The extended algorithm for identifying the exogenous orders along with the 

ARMA orders is Search-Based-ARMAX-Orders. 

 
SEARCH-BASED-ARMAX-ORDERS (depthVector, orderDimension, timeSeries) 
minBIC ← ∞ 
orderVector ← Array [size = orderDimension, value = 0]  
while not (orderVector = prevOrderVector)  
 prevOrderVector ← orderVector 
 for each neighbor in  findNeighbor (orderVector, depthVector)  
  calculate BIC for neighbor using (3.2)  
  if BIC < minBIC 
   minBIC = BIC 
   orderVector = neighbor 
return orderVector 

Algorithm 3.3 – SEARCH-BASED-ARMAX-ORDERS  

Once the AR, MA and exogenous orders are known, the parameters are 

determined by the maximum likelihood parameter estimation technique [56]. Thus, an 

ARMAX model can be built automatically to forecast energy demand. The SEARCH-

BASED-ARMAX-ORDERS does not determine which exogenous terms should be used with 

the model, but this technique can be adapted to include an additional search option for 

dropping exogenous terms. 



35 

3.3 Incorporating Machine Learning Techniques 

The ARMAX model provides a good linear forecasting model. However, the 

forecast can be improved by incorporating nonlinearity into the model. Energy demand 

time series data is nonlinear by nature [13]. Learning of domain knowledge is also another 

important factor to have a robust model. Machine learning techniques are useful for 

representing the nonlinearity and for learning domain knowledge. To get further improved 

forecasting accuracy, this thesis examines machine learning techniques to create nonlinear 

forecasting models. These improved algorithms are discussed below. 

Figure 3.4 – ENSEMBLE-REGRESSION learning 

3.3.1 Ensemble Regression Learning 

Chapter two presented the application of machine learning techniques to forecast 

modeling. This thesis combines the forecasts made by different models using ENSEMBLE-

Ensemble Regression Technique 
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REGRESSION. This thesis uses a search-based approach to find the structure and parameters 

for the forecasting models. Forecasting results are obtained from time series forecasting 

modeling techniques such as ARMAX, linear regression (LR) and other machine learning 

techniques such as artificial neural network (ANN), support vector regression (SVR) and 

regression trees (RT). The forecasted results from all these techniques are combined 

together with the ENSEMBLE-REGRESSION technique as illustrated in Figure 3.4. 

The technique is represented as 

  

1

ˆ ˆ ,
M

m
t m t

m
Y c Y



   (3.6) 

where is the final estimated value,  ˆ m
tY  is the output from model m, c is the intercept and 

M is the total number of models. The ensemble regression algorithm works as follows 

ENSEMBLE-REGRESSION (modelCount, timeSeries) 
/* Training*/  
modelVector ← Initialize with all available models  
outputVector ← Array [size = modelCount, value = 0]  
for index = 1 to modelCount 
 outputVector[index] ← mdoelVector[index].estimate(timeSeries)  
coeffVector ← Array [size = modelCount, value = 0]  
[coeffVector, intercept] ← learnModelCoefficient(timeSeries) 
 
/* Forecasting */  
forecastedValue ← intercept 
for index = 1 to modelCount 
 forecastedValue ← forecastedValue + outputVector[index]*coeffVector[index] 
return forecastedValue 

Algorithm 3.4 – ENSEMBLE-REGRESSION  

3.3.2 Input Modeling Technique 

Forecasting model inputs may be related to the output in either a linear or a 

nonlinear manner. The nonlinearity may vary from input to input. Modeling the nonlinear 
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relationship between input and output variable is expected to yield a better overall 

forecast. Figure 3.5 shows the input modeling techniques. 

Figure 3.5 – ENSEMBLE-REGRESSION with input modeling 

This technique includes two stage learning. In the first stage, a set of statistical and 

machine learning techniques are used for modeling the inputs. A specific group of 

candidate models are examined against different input types. The most appropriate model 

among the candidate models in a group is chosen for each individual input set. For 

example, different candidate autoregressive and moving average (ARMA) models are 

tested against the previous energy demand data. The most suitable ARMA model is 

chosen for modeling the previous energy demand input data. Similarly, the most 

appropriate regression tree (RT) model and artificial neural network (ANN) model is 

chosen for the weather inputs and the seasonal information, respectively. The energy 
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demand forecast output is generated from each of those selected models. The second stage 

contains an ensemble learner that combines the outputs from the first stage.  

The input modeling technique can be described mathemtically,  

 min{ 1: , ( )},i m m i
m

W m M Model x    (3.7) 

Finally,  

 
1

ˆ ,
I

t i i
i

Y c W


   (3.8) 

where t̂Y  is the final estimated value, iW  is the output from model m, c is the intercept, i  

is the regression parameter for the ith model and M is the total number of models. The 

Equation (3.7) describes the technique of selecting a suitable model for an input. The input 

xi is tested with all available candidate models. The model that gives the minimum error ε 

is chosen as the appropriate model for that input. The input modeling algorithm is 

presented below. 

Preprocessing of the inputs is not required in this technique because the machine 

learning models transform the inputs into the desired nonlinear forms. Hence, this 

technique is capable of learning where nonlinear transformations for the inputs are needed. 

Thus, learning of domain knowledge can be achieved by using this technique. 
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INPUT-MODELING (modelCount, inputCount, timeSeries) 
/* Training*/  
modelVector ← Initialize with all available models  
selectedModelVector ← Array [size = seasonCount, value = 0] 
inputVector ← Array [size = inputCount, value = 0]  
for inputIndex = 1 to inputCount 
 minModelError ← ∞ 
 for modelIndex = 1 to modelCount 
  modelError ← modelVector[modelIndex].estimate(timeSeries) 
  if modelError < minModelError 
   minModelError ← modelError 
   selectedModelVector[inputIndex] ← modelVector[modelIndex] 
 
outputVector ← Array [size = inputCount, value = 0]  
for index = 1 to inputCount 
 outputVector [index] ← selectedModelVector[index].estimate(timeSeries) 
coeffVector ← Array [size = inputCount, value = 0]  
[coeffVector, intercept] ← learnModelCoefficient(timeSeries, outputVector) 
 
/* Forecasting */  
forecastedValue ← intercept 
for index = 1 to inputCount 
 output ← selectedModelVector[index].estimate(timeSeries) 
 forecastedValue ← forecastedValue + output *coeffVector[index] 
return forecastedValue 

Algorithm 3.5 – INPUT-MODELING 

3.3.3 Modeling Seasonality 

Energy demand data is highly influenced by the seasons [14, 16]. Figure 3.6 shows 

how the daily natural gas demand is changed based on the season. The figure shows the 

daily natural gas demand for a city in the U.S. Clearly, the trend in one season is different 

from the trend in another season. Hence, it is expected to get simpler and more precise 

models if the dataset is divided into smaller parts based on the seasons.  
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Figure 3.6 – Dividing the data based on seasons 

In this technique, the energy demand dataset is separated and divided into multiple 

datasets based on the seasonal or periodic characteristic (e.g., seasons, months, or days in 

a week). Each separated dataset is modeled individually using a model search technique. 

A model is selected based on the minimum error. The outcome of the model selection is 

used as training data for a set of artificial neural networks (ANN). The day of year and the 

temperature are used as inputs for the ANNs. Each of the ANNs decides a season in which 

a particular day belongs. The output from each seasonal model is then selected by the 

ANNs using majority voting ensemble learning technique. Figure 3.7 illustrates the 

technique. 

The number of seasons is an input for the modeling seasonality algorithm. To 

obtain better accuracy, a different number of seasons can be tested, and the one with the 

minimum error should be selected. Thus a ‘number of seasons can be determined’. This 

thesis uses three seasons as an example. 
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Figure 3.7 – Learning by modeling seasonality 

This modeling seasonality technique includes three-stage learning. The first stage 

is a separator module that separates the energy demand forecasting data into different 

datasets based on the seasonal information such as the day of year and the temperature of 

the day, an ANN is trained and used for the separation. The next stage contains a set of 

statistical and machine learning techniques that are used for modeling each of the seasonal 

datasets. A suitable model is searched and selected for each of the individual dataset. The 

third stage contains a majority voting module that determines which output to select. The 

temperature and the day of the year are used for making the selection.  
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The modeling seasonality technique can be described mathemtically, for each 

seasonal dataset sX D   

   min 1: , ,s m m s
m

Model m M Model X    (3.9) 

Finally,  

   ˆ min 1: , ,t s s t
s

Y s S Model X    (3.10) 

where t̂Y  is the final estimated value, sModel is the output from model m and M is the 

total number of models. The Equation (3.9) describes the technique of selecting a suitable 

model for the separated seasonal dataset. The input seasonal dataset Xs is tested with all 

available candidate models. The model that gives the minimum error ε is chosen as the 

appropriate model for that seasonal dataset. In Equation (3.10), each of the selected 

models from Equation (3.9) is tested to check which one gives the minimum error. The 

model that gives the minimum error is considered as the appropriate model for the input 

set.  

This modeling seasonality technique includes three stages of learning; division of 

the data based on seasonal information, choose a model for each dataset and ensemble the 

result. The modeling seasonality algorithm is presented below. 
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MODELING-SEASONALITY (modelCount, seasonCount, timeSeries) 
/* Training*/  
modelVector ← Initialize with all available models  
selectedModelVector ← Array [size = seasonCount, value = 0] 
dataSetVector ← SeparateTimeSeries(timeSeries, seasonCount) 
 
for seasonIndex = 1 to seasonCount 
 currentDataSet ← dataSetVector[seasonIndex]  
 minModelError ← ∞ 
 
 for modelIndex = 1 to modelCount 
  modelError ← modelVector[modelIndex].estimate(currentDataSet) 
  if modelError < minModelError 
   minModelError ← modelError 
   selectedModelVector[seasonIndex] ← modelVector[modelIndex] 
 
learnSeasonSelection(timeSeries, featureVector) 
 
/* Forecasting*/  
seasonIndex ← selectSeason(timeSeries) 
forecastedValue ← modelVector[seasonIndex].estimate(dataSetVector[seasonIndex]) 
 
return forecastedValue 

Algorithm 3.6 – MODELING-SEASONALITY 

In this algorithm, the most appropriate model is searched for each individual 

season. A set of features is selected for learning the season identification. These features 

are used to learn the season identification models. The ENSEMBLE-REGRESSION is used for 

selecting the winning season based on the minimum model error. Finally, the model for 

the winning season is used for calculating the final forecasted value.  

The novel techniques introduced by this thesis are described in this chapter. It is 

important to evaluate the performance of these techniques. The next chapter evaluates the 

performance of these techniques, and presents the testing methods and the test results.  
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4 EVALUATION AND ANALYSIS OF THE METHODS 

 

This thesis presents novel techniques to automate energy demand forecasting. 

These novel techniques include the search-based approach and machine learning 

techniques that are described in chapter three. This chapter presents the evaluation of these 

novel techniques. This chapter contains two sections. The first section presents the testing 

process and the results of the search-based approach. The second section contains the 

testing and the results of the machine learning techniques. 

4.1 Evaluation of SEARCH-BASED-BIC 

SEARCH-BASED-BIC searches for the appropriate model in the candidate model 

space. This approach identifies the orders of an autoregressive and moving average 

(ARMA), autoregressive with exogenous inputs (ARX) and autoregressive and moving 

average with exogenous input (ARMAX) models. This section examines the accuracy of 

the order estimates. The search-based approach overcomes the poor computational 

performance of the brute force technique. This section also compares the computational 

performance of the search-based technique with the brute force technique. The first 

subsection provides details on the accuracy testing. The performance testing follows in 

section 4.1.2.  

4.1.1 Accuracy Testing Method 

This section describes how the accuracy of SEARCH-BASED-BIC is evaluated. The 

accuracy is measured considering two different aspects. First, the accuracy is measured 

using synthetic datasets, where the orders and the parameters are known. Second, the 
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forecasting accuracy is measured for sample of daily natural gas flow and daily electricity 

demand. The datasets are described in the respective sections. 

Synthetic datasets are used to check the accuracy of the model order estimation 

using the search-based approach. The orders and the parameters are known for the 

synthetic dataset. Thus, it is possible to compare the estimated order with the actual order 

using the synthetic datasets as opposed to the real datasets, where the orders are unknown. 

However, it is possible to measure the forecasting accuracy for natural gas and electricity 

datasets.  

The next three subsections present the testing of the search-based approach on 

ARMA, ARX and ARMAX models. The fourth section presents the forecasting accuracy 

on natural gas and electricity datasets. 

4.1.1.1 ARMA Model Testing Method 

SEARCH-BASED-BIC determines the orders of an ARMA model. The order 

estimation accuracy is tested using synthetic datasets with known model orders. A set of 

12 synthetic datasets with different ARMA model orders are created using the MATLAB 

arima function from the econometrics toolbox [57]. The arima function takes the 

autoregressive parameters, the moving average parameters and the number of data points 

as inputs. The parameters are generated using a random variable with the constraint of 

having the polynomial roots within the unit circle so that a stable ARMA system is 

obtained. Each of these datasets is tested with the SEARCH-BASED-BIC, and the orders are 

determined. Tables 4-1 and 4-2 show the results obtained from the testing.  
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       Estimated 
Actual 1 2 3 4 5 Mean Variance 

1 9 3       1.3 0.2 
2 11 1       1.1 0.1 
3 8 4 0     1.3 0.2 
4 6 2 3 0 1 2.0 1.5 

Table 4.1 – AR order confusion matrix 

       Estimated 
Actual 

1 2 3 4 5 Mean Variance 

1 8 4       1.3 0.4 
2 7 0 5     1.8 0.6 
3 5 2 2 3   2.3 0.8 
4 4 4 2 2   2.2 0.8 

Table 4.2 – MA order confusion matrix 

Tables 4.1 and 4.2 represent the estimated orders against the actual known orders. 

The mean and the variance of the estimated orders are presented in the two rightmost 

columns, respectively. The variance indicates the uncertainty of the estimated orders. The 

larger the variance the more uncertain the estimated order is. The estimated orders are 

often smaller than the actual orders. A possible reason for the under-estimation is that 

some of the ARMA roots are near the center of the unit circle and do not contribute 

substantially to the dynamics of the system. Thus, taking an ARMA root from any 

arbitrary location within the unit circle does not give the expected results. To test this 

hypothesis, the roots are selected from the right side of the unit circle as illustrated in 

Figure 4.1  
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Figure 4.1 – ARMA root selection location in unit circle 

The testing is repeated with the ARMA roots taken from the shaded location in 

Figure 4.1, and the results are shown in Table 4.3 and Table 4.4. 

 
       Estimated 
Actual 1 2 3 4 5 Mean Variance 

1 6 6       1.5 0.3 
2 2 4 6     2.3 0.6 
3   6 2 4   2.8 0.8 
4   3 1 2 6 3.9 1.6 

Table 4.3 – AR order confusion matrix 

       Estimated 
Actual 

1 2 3 4 5 Mean Variance 

1 11 1       1.1 0.1 
2 5 5 2     1.8 0.5 
3 1 2 4 5   3.1 0.9 
4   1 4 2 5 3.9 1.1 

Table 4.4 – MA order confusion matrix 
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The average values of the estimated orders are improved and are close to the actual 

orders, but the individual estimated orders are mostly higher than the actual orders, but 

still are closer to the actual order. Here, the effects of the parameters are examined by 

choosing the parameters randomly from the unit circle and the results are compared with 

the result when the parameters are taken from the selected region. The latter case gives the 

better result. 

To check the impact of choosing a nearby order instead of the actual order, 

forecasting accuracies are calculated for both the actual and the estimated order. A total of 

1000 synthetic data points are generated with random parameters. Among the 1000 points, 

500 points are used as data to train the ARMA model parameters for a candidate ARMA 

orders pair. The remaining 500 data points are used for testing to the forecasting accuracy 

using those estimated parameters and the candidate orders.  

The forecasting error is calculated as mean absolute percentage error (MAPE)  

  100% ,
1

t t

t

n Y YMAPE
n Yt

 
 

   
 
 


  (4.1) 

where tY is the actual output, t̂Y is the forecasted output and n is the total number of data 

points.  

The reason for using MAPE is that it gives a fair comparison when different 

datasets are used and when the unit of measurements are not the same. This thesis uses 

natural gas, electricity, and synthetic datasets with different units of measurements. Hence, 

it is reasonable to calculate the MAPE rather than using other units. The model searching 
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process also minimizes the MAPE value for the machine learning techniques, the model 

with the minimum MAPE value is considered as the appropriate model. 

Table 4-5 shows the forecasting error obtained for the actual and the estimated 

orders. 

Actual Estimated 
Orders MAPE Orders MAPE 

1,3 31.02 2,1 30.99 
3,1 25.40 2,1 25.40 
3,3 23.85 3,1 23.83 
4,4 26.32 1,4 26.38 
4,3 26.82 3,2 26.83 

Table 4.5 – Forecasting error for estimated and actual orders 

Table 4-5 shows a small difference in the forecasting error for the estimated and 

the actual orders, which supports the validity of the results obtained by the order 

estimation technique.  

4.1.1.2 Testing the ARX Model 

SEARCH-BASED-ARMAX- ORDERS are used for estimating the orders of an 

autoregressive with exogenous (ARX) model. A group of 12 synthetic datasets with 1000 

points are used for testing the ARX order estimation using the minimum Bayesian 

information criteria (BIC) value. The exogenous input variable is generated from the 

normal distribution with zero mean and unit variance. The test results are shown in Tables 

4-6 and 4-7.  
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       Estimated 
Actual 1 2 3 4 5 Mean Variance 

1 12         1.0 0.0 
2 5 7       1.6 0.2 
3   4 8     2.7 0.2 
4     4 8   3.7 0.2 

Table 4.6 – AR order confusion matrix 

      Estimated 
Actual 

1 2 3 4 5 Mean Variance 

1 12         1.0 0.0 
2 9 3       1.3 0.2 
3 4 2 5   1 2.3 1.4 
4 3 0 1 8   3.2 1.6 

Table 4.7 – Exogenous (X) order confusion matrix 

Table 4.6 and Table 4.7 show that the average estimated AR orders are close to the 

actual orders, whereas the estimated orders for the exogenous variable are smaller than the 

actual orders.  

4.1.1.3 Testing the ARMAX Model 

The autoregressive and moving average with exogenous (ARMAX) model is 

tested with a group of 60 datasets with 1000 data points each. The AR, MA and the 

exogenous parameters are chosen randomly. MA and exogenous inputs are chosen from 

the normal random distribution with zero mean and one and 0.25 variance, respectively. 

The exogenous variables are added with the ARMA model with random weights. Thus, 

there is a direct correlation between exogenous inputs and the output. 

Tables 4-8, 4-9 and 4-10 show the confusion matrix for AR, MA, and the 

exogenous order.  
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      Estimated 
Actual 1 2 3 4 5 Mean Variance 

1 32 12 11 2   1.7 0.8 
2 9 30 8 7 6 2.5 1.4 
3   10 35 11 4 3.1 0.6 
4   2 25 27 6 3.6 0.5 

Table 4.8 – AR Order confusion matrix 

       Estimated 
Actual 

1 2 3 4 5 Mean Variance 

1 59 1       1.0 0.2 
2 42 17 1     1.3 0.2 
3 36 12 12     1.6 0.6 
4 31 12 12 4   3.5 1.0 

Table 4.9 – MA Order confusion matrix 

       Estimated 
Actual 

1 2 3 4 5 Mean Variance 

1 55 4 0 1   0.8 0.3 
2 29 27 4 0   1.6 0.4 
3 30 9 20 1   1.9 0.9 
4 22 1 21 12 4 2.6 1.8 

Table 4.10 – X Order confusion matrix 

The results from Table 4.8,Table 4.9, and Table 4.10 show that the orders are not 

estimated reasonably. Use of the similar normal distribution for the exogenous and the 

error terms can be a reason for such results, since the system is not able to distinguish 

between the exogenous input and the noise. Further analysis shows that, if a regular linear 

or nonlinear signal (e.g., sine or cosine values of running numbers) is used as exogenous 
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input, the AR and the MA orders are estimated almost precisely, but the exogenous orders 

are incorrect.  

4.1.1.4 Testing the Forecasting Accuracy Using Real Dataset 

The accuracy of the search-based approach is tested with the natural gas and 

electricity datasets. The gas dataset consists of daily natural gas usage and temperature for 

2800 days from a specific location in the United States. The electricity dataset consists of 

daily load and temperature for 800 days from another specific location in the United 

States. For both the datasets, an ARX model is built with temperature as the exogenous 

input. A nonlinear transformation known as heating degree day [45] is made to the 

temperature using the below formula 

  max 0, ,t t refHDD T T   (4.2) 

where Tt is the temperature at day t and Tref is the reference temperature.  

The heating degree days (HDD) with value with reference temperature as 550F and 

the Fourier terms (sine, cosine) of the day of the year and the day of the weeks are also 

used as exogenous inputs. The first 50% points from the datasets are taken as training 

datasets, the next 30% are taken as development datasets and the remaining 20% are taken 

as testing datasets. The models are trained with the training datasets. The trained models 

are evaluated using the development datasets. The training and the evaluation processes 

are repeated with different number of previous terms for the energy demand and the 

temperature. The model with the minimum BIC value is chosen as the appropriate model. 

The winning model is retrained using the training and the development dataset and is 

evaluated using the test dataset. Thus, the forecasted values are obtained. 
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The SEARCH-BASED-BIC approach finds the minimum BIC value for AR order 36 

and exogenous order three for the gas dataset. The forecasting error is calculated for the 

minimum BIC orders, and the result is shown in Table 4-11. 

 

 BIC MAPE 
Initial model 3.25e+04 9.16 
Minimum BIC 3.21e+04 6.36 

Table 4.11 – Comparison of the forecasting error for the gas dataset 

For the electricity dataset, the search-based approach finds out AR order as 26 and 

exogenous order as two with a MAPE of 8.10%. Thus, searching the model space may 

find a model that gives a better accuracy compared to the initial model.  

4.1.2 Computational Performance Testing 

The SEARCH-BASED-BIC approach estimates the orders faster than the BRUTE-

FORCE-BIC technique without compromising accuracy. The performance improvement 

can be measured by comparing the number of BIC calculations required by the brute force 

technique with the number of BIC calculations required by the SEARCH-BASED-BIC 

approach. In terms of computational complexity, the calculations of the BIC are the most 

expensive operation is the model search process. Other tasks such as iterating through the 

loop, variable initialization, and comparison of values have constant time complexity and 

are negligible when compared to the BIC calculation time complexity, which is  2 ,O n  

where n is the number of parameters.  

To compare the number of BIC calculations, a group of 48 ARMA datasets are 

generated with random orders with the range from one to 6, and the maximum order is 

assumed as 10. The orders are estimated using both the BRUTE-FORCE-BIC and SEARCH-
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BASED-BIC algorithms. The total number of BIC calculations is measured for order depth 

from one to three. Table 4.12 shows the number of average BIC calculations required by 

SEARCH-BASED-BIC for various search depths. 

 

Search 
Depth 

Average number of 
BIC calculations for 
BRUTE-FORCE-BIC 

Average number of 
BIC calculations for 
SEARCH-BASED-BIC  

Frequency that 
SEARCH-BASED-BIC 
found the same 
minimum as BRUTE-
FORCE-BIC 

1 100 40.0 81.3% 
2 100 62.2 97.9% 
3 100 75.4 100.0% 

Table 4.12 – Performance improvement by the SEARCH-BASED-BIC approach 

Furthermore, the BIC calculations saved by the search-based approach are for the 

higher orders, which require more time to calculate. Hence, the overall performance 

improvement is achieved in terms of the time complexity.  

4.2 Evaluating the Machine Learning Techniques 

This thesis presents novel techniques to improve the forecasting accuracy by 

incorporating machine learning techniques. The forecasting accuracy is calculated for 

these techniques and is compared with the commonly used techniques, including 

autoregressive and moving average (ARMA) models, artificial neural networks (ANN), 

regression trees (RT) and linear regression (LR) models. The result also is compared with 

the result from the Marquette University GasDayTM linear model. Most of the experiments 

in this section are performed with the natural gas or electricity datasets. Some experiments 

are done with a synthetic dataset for demonstration purposes. To make a fair comparison, 

all techniques use the same input sets (i.e., same number of autoregressive terms, same 
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exogenous inputs). The synthetic dataset is defined specifically where needed. The natural 

gas and electric datasets use five autoregressive terms with temperature and day of year as 

exogenous inputs. Temperature is transformed using (4.2), and Fourier terms (sine and 

cosine values) of the day of the year are taken when domain knowledge is presumed to be 

available. If a different set of inputs other than those mentioned above are used an 

experiment, they are described with the respective testing. 

This section contains four subsections. The first subsection presents the forecasting 

accuracy for the individual techniques. The next three subsections present the testing 

details of the techniques presented by this thesis such as ENSEMBLE-REGRESSION 

technique, input modeling technique, and modeling of the seasonality.  

4.2.1 Individual Techniques 

Individual forecasting techniques such as autoregressive and moving average 

(ARMA), artificial neural network (ANN), linear regression (LR), and regression tree 

(RT) are used. Each of the individual techniques uses the available natural gas and 

electricity datasets as input, and the availability of the domain knowledge is presumed. 

Each of the natural gas and the electricity datasets is divided into training, development 

and testing with the ratio of 50%, 30% and 20%, respectively. For each of the techniques, 

the training datasets are used to train the model. Then the models are evaluated using the 

development datasets. The process is repeated by varying the number of previous terms 

for the energy demand and the temperature. The final models are selected based on the 

minimum BIC and MAPE values (for the econometrics and the machine learning models, 

respectively) obtained during the development phase. The final models are retrained with 

the combined training and development dataset and are evaluated using the test datasets. 
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The forecasting test results for the natural gas and electricity demand are presented 

in Table 4-13 and Table 4-14, respectively. The results are generated using 16 

autoregressive terms, the temperature of the day is transformed using Equation 4.2 and the 

seasonal information such as the day of year and the day of week with their Fourier values 

(sine and cosine). 

 

 ARMA ANN LR RT 
MAPE 15.28 8.13 7.58 8.11 

Table 4.13 – Forecasting accuracy for individual techniques for natural gas dataset 

ARMA ANN LR RT 
MAPE 9.13 7.27 8.10 6.89 

Table 4.14 – Forecasting accuracy for individual techniques for electricity dataset 

If the search-based approach is applied for each of these techniques, as it is done 

for ARMA in section 4.1.1.4, a better result is obtained. The search-based approach is 

applied for the natural gas dataset and the result is shown in the table. 

 

 ARMA ANN LR RT 
MAPE 15.37 6.51 6.36 7.76 

Table 4.15 – Forecasting accuracy for individual techniques for natural gas dataset 

4.2.2 Ensemble Regression  

Results obtained from different econometrics and machine learning techniques are 

combined using the ENSEMBLE-REGRESSION technique described in section 2.2.1. The 

generalized linear model (GLM) is used for ENSEMBLE-REGRESSION. A quadratic model is 

used with the MATLAB default canonical link function [58] that gives the minimum 
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error. The MATLAB default canonical function is ‘identity’ (normal distribution). The 

empirical result shows that the canonical function gives better result than other link 

functions such as ‘log’ (poisson distribution), ‘logit’ (binomial distribution).  

The ENSEMBLE-REGRESSION is applied to the gas and electricity demand datasets. 

The first 80% of the data points are used for the training, and the remaining are used for 

the testing. The training process starts with training the individual models, which is 

described in the previous section. The outputs from the individual models are taken as 

inputs for the ensemble regression technique, which is trained using a generalized linear 

model.  

The testing process starts by obtaining results from individual models using the 

test dataset. The results from the individual models are passed to the ensemble regression 

module, and the final forecasted values are obtained. The MAPE forecasting errors are 

6.26% and 6.05%, respectively, which is better than any of the respective individual 

modeling techniques. Hence, the forecasting accuracy is improved by the ENSEMBLE-

REGRESSION technique. 

4.2.3 Modeling the Inputs 

The ENSEMBLE-REGRESSION technique described in the previous subsection uses 

all available inputs for each of the individual models, whereas the input modeling 

technique uses a single input set instead of the complete input set for each of the 

individual models. Thus, each of the input sets is modeled individually using different 

modeling techniques and are combined using ENSEMBLE-REGRESSION. The technique is 

capable of learning domain knowledge, and testing is performed to demonstrate that. The 
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technique is tested with the synthetic dataset, and the results are verified with the real gas 

and electricity datasets. The synthetic dataset is created using the Equations. 

 ,1 2 3 43 15y y y y y      (4.3) 

  1 sin 2 360 ,y doy pi   (4.4) 

  2 max 1 ,y rand    (4.5) 

 3 2 2,y AR MA  (4.6) 

 4 5,y   (4.7) 

where doy is the day of the year, 1 2 3 4, , ,y y y y  are the preprocessed input components and y 

is the final output. The AR2MA2 model in (4.6) is generated with zero mean and unit 

variance. 

The purpose of using the synthetic dataset here is to demonstrate how the 

technique is capable of modeling the nonlinear transformations of inputs. Hence, an input 

with a nonlinear transformation is sufficient to demonstrate this fact. However, additional 

terms are included to make the synthetic dataset closer to the real dataset. The synthetic 

dataset is constructed using the autoregressive terms, the nonlinear transformed value of 

the seasonal information such as the day of year and a random input value that represents 

exogenous inputs. Similar components are present in the real energy demand datasets. 

A total of 1000 data points are created, and following results are obtained. The 

variables y1, y2 and y3 are modeled using support vector regression (SVR), regression tree 

(RT) and the ARMA model, respectively. Table 4.16 shows the results obtained from the 

testing.  
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Benchmark Input 
Modeling With domain 

knowledge 
Without domain 
knowledge 

MAPE 37.20 68.24 31.23 

Table 4.16 – Forecasting accuracy for input modeling using the synthetic dataset 

To compare the performance, two sets of benchmarks are created using the linear 

regression model. One benchmark technique uses domain knowledge, and the other does 

not. The test result shows that the input modeling method proposed by this thesis exceeds 

the accuracy of both of the benchmarks. The testing is performed on the same dataset as it 

is done with the benchmark techniques.  

To check the applicability of the technique in real data, this testing is repeated with 

the gas and electrical datasets, using sixteen autoregressive terms with temperature and 

day of year as exogenous inputs. Temperature is transformed using (4.2), and Fourier 

terms (sine and cosine values) of day of year are taken when the domain knowledge are 

presumed to be available. For the real datasets, the list of the modeling techniques for each 

input set is presented in Table 4.17. 

 
Variable Technique 
AR terms ARMA 
Temperature RT 
Day of year RT 
Day of week ANN 

Table 4.17 – Modeling technique for individual input 

Table 4.18 shows the test result for the gas dataset by using above input-model 

sets. Table 4.19 represents the result for the electricity dataset also by using the same 

input-model sets. For the electricity datasets, the input modeling technique exceeds the 
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forecasting accuracy of both the benchmarks. For the natural gas dataset, the input 

modeling technique is far more accurate than the benchmark of no domain knowledge. 

The accuracy of the input modeling technique is close to the accuracy of benchmark of 

having domain knowledge. 

 

 

Benchmark Input 
Modeling With domain 

knowledge 
Without domain 
knowledge 

MAPE 7.58 27.13 7.83 

Table 4.18 – Modeling technique for individual inputs for natural gas 

 

Benchmark Input 
Modeling With domain 

knowledge 
Without domain 
knowledge 

MAPE 8.10 11.39 5.86 

Table 4.19 – Modeling technique for individual inputs for electricity 

Further analysis on the temperature input shows that a nonlinear transformation is 

made to the temperature by the input modeling technique, which is similar to having 

domain knowledge that suggests a similar nonlinear transformation in the temperature. 

Thus, domain knowledge is learned by the input modeling technique. Figure 4-2 shows the 

normalized temperature with the values between -1 to 1 and its nonlinearly transformed 

output for the gas dataset.  



61 

 
Figure 4.2 – Input and output patterns for scaled temperature for the gas dataset 

If we plot the actual temperature against the individual model output (i.e., the 

preprocessed and nonlinearly transformed input temperature) in Figure 4.3, we can 

observe the similar representation of domain knowledge as presented by Equation 4.2. 

Thus, the input modeling technique is capable of learning domain knowledge. 

 
Figure 4.3 – Modeling of the temperature for gas 
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Figure 4.3 shows the nonlinear transformation on the temperature. This nonlinear 

transformation provides better forecasting accuracy compared to the output when actual 

temperature is used as an input. 

When tested with the electricity dataset, the transformation of the temperature 

shows different behavior, presented in Figure 4.4. The behavior is also consistent with 

domain knowledge of electricity. Unlike natural gas, where the demand becomes nearly 

constant after a certain threshold of temperature, the electricity demand increases after the 

threshold temperature, as suggested by Figure 4.4. 

 

 

Figure 4.4 – Modeling of the temperature for electricity 
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methods are tested with the temperature, and regression tree provides the best result. 

Further research with other continuous models is needed. Another potential problem with 

the regression tree is that it may not perform well for the unusual cold or hot days. Test 

results show that, using the regression tree, the output does not change significantly for 

exceptionally cold or hot temperatures. This is also an opportunity for further research.  

4.2.4 Modeling Seasonality 

The energy demand datasets are broken into three seasons. The decomposition of 

the dataset is performed using a neural network classifier. Temperature and the day of the 

year are fed as the inputs of the classifier module. A support vector machine was tested as 

a classifier, but neural networks provided better accuracy. Once separated, each of the 

three seasonal datasets is modeled individually, and then one of the models’ outputs is 

selected by the weighted voting ensemble technique. The combined result, along with the 

individual seasonal output, is shown in Tables 4-10 and 4-21 for the gas and the electricity 

datasets, respectively. 

 
Modeling Seasonality MAPE 

Complete dataset 6.17 
Season-1 6.13 
Season-2 5.60 
Season-3 6.15 

Combined 5.99 

Table 4.20 – Gas demand forecasting error for modeling seasonality 
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Modeling Seasonality MAPE 
Complete dataset 8.10 
Season-1 6.48 
Season-2 7.46 
Season-3 11.55 
Combined 7.11 

Table 4.21 – Electricity demand forecasting error for modeling seasonality  

For both the gas and electricity datasets, the combined results shows that the 

accuracy is improved after applying the modeling seasonality technique. 

The MAPE values presented in this chapter are calculated for the test dataset. The 

result is calculated using the Gasday linear regression model for the same natural gas 

dataset with additional weather inputs such as precipitation, dew points and wind speed. 

For the test dataset, the MAPE of the Gasday linear regression model is 4.09%. The best 

result from this thesis is not able to exceed this accuracy. However, the models presented 

in this thesis made significant improvement for the simpler models. These techniques are 

also capable of learning domain knowledge and can provide significant accuracy when 

domain knowledge is not present. Further research into the techniques presented in this 

thesis should be able to build more complex models and should achieve more accurate 

forecasting results. 

Comparative analysis among the above three techniques shows that the 

ENSEMBLE-REGRESSION technique works best for the gas datasets, whereas the input 

modeling techniques provides the best results for the electricity demand forecasting. The 

relative accuracy of the input modeling technique is lower compared to the other two 

techniques because the input modeling technique is not using historical temperature data, 

whereas the other two techniques are using that. Further research and analysis is needed to 
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use the historical data with the input modeling technique. The modeling seasonality 

technique improves the accuracy for both the natural gas dataset and the electricity 

demand dataset. Overall, the modeling seasonality technique provides the best 

performance among all three machine learning techniques introduced in this thesis.  
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5 CONCLUSIONS 

This thesis contributes to the automation of energy demand forecasting by 

introducing novel techniques. These novel techniques include searching the model space 

for a suitable model, machine learning techniques for improving the forecasting accuracy, 

and techniques for learning domain knowledge from the data. The previous chapter 

includes the test results from these novel techniques. The test methods and the test results 

demonstrate the contribution of this thesis towards the complete automation of energy 

demand forecasting.  

This chapter provides a conclusion to the thesis. The first section presents the 

summary of the thesis work done. Future work is described in the next section.  

5.1 Summary of the Thesis 

This thesis achieved two goals that contribute towards the automation of energy 

demand forecasting; 1) to search for the appropriate model in the candidate model space 

and 2) to improve the overall forecasting accuracy. To have a completely automated 

energy demand forecasting system in place, the complete model space search is necessary 

over which the maximum accuracy can be obtained. This thesis presents techniques for 

searching the model space and for improving the energy demand forecasting accuracy 

advancing the automation of energy demand forecasting. 

From the test results, the order search algorithm offers a performance improvement 

compared to the brute force method without compromising accuracy, as shown in section 

4.1.2. Overall, the BIC search technique does not show a good result for the ARMAX 
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model when compared with the results for the ARMA and the ARX model. To identify the 

problem, further analysis is required for the ARMAX order estimation technique.  

The test results show that forecasting accuracy is improved when machine learning 

and econometrics modeling techniques are combined together using ENSEMBLE-

REGRESSION as introduced in this thesis. However, the accuracy of the ENSEMBLE-

REGRESSION is dependent on the accuracy of each of the individual model outputs. 

Increasing the accuracy of the individual models should lead into further improvement of 

the overall results. 

The input modeling technique is capable of input preprocessing. This technique 

also is able to learn and represent domain knowledge from the data. The input modeling 

technique even shows better accuracy than the linear model using prior domain 

knowledge, because the input modeling technique is capable of modeling the 

nonlinearities.  

The modeling seasonality technique divides the dataset based on seasons using an 

intelligent decomposition system. These divided datasets are model individually, and are 

combined by ensemble, yielding improved accuracy. 

5.2 Future Work 

Test results show that performance and accuracy improvements are achieved by 

the novel techniques proposed by this thesis, but there is room for improvement. This 

section describes ideas that might help to obtain better results. 

The SEARCH-BASED-BIC algorithm starts from the lowest candidate orders. It can 

be worthwhile to use the estimated order from another technique and then start the search 

from that point. Additional performance improvement is expected by this approach. The 
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results from the other technique are not necessarily very accurate, but should be 

reasonably closer to the actual result. Otherwise, the cost of the search will increase.  

This thesis searches for the model structure for each of the individual machine 

learning or econometrics technique. The similar search approach can be applied to the 

input selection. This thesis uses the same set of inputs for each individual modeling 

technique. Instead, algorithms could be developed to discard unnecessary inputs. This may 

contribute towards improving the accuracy as well as reducing the computational 

complexity. 

The machine learning techniques introduced by this thesis use the historical energy 

demand data and the current temperature as an input. It is also important to include 

historical temperatures and also other relevant inputs, such as other weather variables and 

economic variables. Each of these new set of inputs should be modeled using different 

techniques and should be integrated. Also, it can be useful to build mechanisms for 

learning more complex domain knowledge using the additional sets of inputs. 

The modeling seasonality technique is highly sensitive to the initial seasonal 

boundary selection. Different initial boundaries can be tested. Also, this thesis uses simple 

modeling techniques to model the individual separated datasets. It is worth investigating 

more complex approaches such as the other techniques introduced in this thesis (e.g., 

ensembling or input modeling) for modeling the individual dataset, and a better 

forecasting accuracy may be obtained. Further dividing the time series data can be another 

improvement. This thesis was tested by dividing the dataset into three seasons; the number 

of divisions can be increased to check the effect. Other than seasons, datasets can be 

divided based on weekly or other periodic factors. 
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For the test results presented in this thesis, statistical significance is not tested. To 

check the statistical significance of the results of the order search techniques presented in 

this thesis paper, a chi-square test can be performed. The null hypothesis for this test is 

“the estimated orders are equal to the actual orders”. However, the statistical significant 

test for the time series requires significant effort. A complex mechanism is required for the 

cross validation tests of time series data.  

  



70 

BIBLIOGRAPHY 

[1] G. E. P. Box, G. M. Jenkins and G. C. Reinsel, Time Series Analysis: Forecasting and 
Control. Hoboken, N.J.: John Wiley, c2008; 4th ed, 2008. 

[2] E. Erdogdu, "Electricity demand analysis using cointegration and ARIMA modelling: 
A case study of Turkey," Energy Policy, vol. 35, pp. 1129-1146, 2, 2007.  

[3] Y. Hou, "Forecast on consumption gap between cities and countries in china based on 
ARMA model," in 3rd International Conference on Intelligent Networks and 
Intelligent Systems (ICINIS), 2010, 2010, pp. 342-345. 

[4] O. Valenzuela, I. Rojas, F. Rojas, H. Pomares, L. J. Herrera, A. Guillen, L. Marquez 
and M. Pasadas, "Hybridization of intelligent techniques and ARIMA models for 
time series prediction," Fuzzy Sets Syst., vol. 159, pp. 821-845, 4/1, 2008.  

[5] K. P. Burnham and K. P. Burnham, Model Selection and Multimodel Inference: A 
Practical Information-Theoretic Approach / Kenneth P. Burnham, David R. 
Anderson. New York: Springer, c2002; 2nd ed, 2002. 

[6] H. Akaike, "A new look at the statistical model identification," IEEE Transactions on 
Automatic Control, vol. 19, pp. 716-723, 1974.  

[7] G. Schwarz, "Estimating the Dimension of a Model," The Annals of Statistics, vol. 6, 
pp. 461-464, Mar, 1978, 1978.  

[8] E. J. Hannan and B. G. Quinn, "The Determination of the Order of an 
Autoregression," Journal of the Royal Statistical Society.  Series B 
(Methodological), vol. 41, pp. 190-195, 1979.  

[9] K. Kavaklioglu, "Modeling and prediction of Turkey’s electricity consumption using 
Support Vector Regression," Appl. Energy, vol. 88, pp. 368-375, 1, 2011.  

[10] A. Azadeh, S. F. Ghaderi, S. Tarverdian and M. Saberi, "Integration of artificial 
neural networks and genetic algorithm to predict electrical energy consumption," 
Applied Mathematics and Computation, vol. 186, pp. 1731-1741, 3/15, 2007.  

[11] A. Azadeh, S. F. Ghaderi and S. Sohrabkhani, "A simulated-based neural network 
algorithm for forecasting electrical energy consumption in Iran," Energy Policy, 
vol. 36, pp. 2637-2644, 7, 2008.  

[12] G. Oğcu, O. F. Demirel and S. Zaim, "Forecasting Electricity Consumption with 
Neural Networks and Support Vector Regression," Procedia - Social and Behavioral 
Sciences, vol. 58, pp. 1576-1585, 10/12, 2012.  



71 

[13] A. Lendasse, J. Lee, V. Wertz and M. Verleysen, "Forecasting electricity 
consumption using nonlinear projection and self-organizing maps," 
Neurocomputing, vol. 48, pp. 299-311, 10, 2002.  

[14] W. Shuai, T. Ling and Y. Lean, "SD-LSSVR-based decomposition-and-ensemble 
methodology with application to hydropower consumption forecasting," in Fourth 
International Joint Conference on Computational Sciences and Optimization (CSO), 
2011, 2011, pp. 603-607. 

[15] S. Asadi, A. Tavakoli and S. Reza Hejazi, "A new hybrid for improvement of auto-
regressive integrated moving average models applying particle swarm 
optimization," Expert Syst, vol. 39, pp. 5332-5337, April 2012, 2012.  

[16] J. C. Lam, H. L. Tang and D. H. W. Li, "Seasonal variations in residential and 
commercial sector electricity consumption in Hong Kong," Energy, vol. 33, pp. 
513-523, 3, 2008.  

[17] (2011). X-12 ARIMA reference manual version 0.3. Available: 
http://www.census.gov/ts/x12a/v03/x12adocV03.pdf. 

[18] A. Azadeh and Z. S. Faiz, "A meta-heuristic framework for forecasting household 
electricity consumption," Applied Soft Computing, vol. 11, pp. 614-620, 1, 2011.  

[19] D. K. Ranaweera, G. G. Karady and R. G. Farmer, "Economic impact analysis of 
load forecasting," IEEE Transactions on Power Systems, vol. 12, pp. 1388-1392, 
1997.  

[20] B. F. Hobbs, U. Helman, S. Jitprapaikulsarn, Sreenivas Konda and D. Maratukulam, 
"Artificial neural networks for short-term energy forecasting: Accuracy and 
economic value," Neurocomputing, vol. 23, pp. 71-84, 12/7, 1998.  

[21] L. I. Kuncheva and J. J. Rodríguez, "A weighted voting framework for classifiers 
ensembles," Knowledge and Information Systems, December 2012, 2012.  

[22] A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Statistics 
and Computing, vol. 14, pp. 199-222, August 2004, 2004.  

[23] C. Chang and C. Lin, "LIBSVM: A library for support vector machines," ACM 
Transactions on Intelligent Systems and Technology (TIST), vol. 2, pp. 27, April 
2011, 2011.  

[24] Ying-Chun Guo, "Knowledge-enabled short-term load forecasting based on pattern-
base using classification & regression tree and support vector regression," in Fifth 
International Conference on Natural Computation, 2009. ICNC '09, 2009, pp. 425-
429. 



72 

[25] H. Mori, N. Kosemura, K. Ishiguro and T. Kondo, "Short-term load forecasting with 
fuzzy regression tree in power systems," in IEEE International Conference on 
Systems, Man, and Cybernetics, 2001, 2001, pp. 1948-1953 vol.3. 

[26] Weiqiang Wang, Ying Guo, Zhendong Niu and Yujuan Cao, "Stock indices analysis 
based on ARMA-GARCH model," in IEEE International Conference on Industrial 
Engineering and Engineering Management, 2009. IEEM 2009. 2009, pp. 2143-
2147. 

[27] S. Mukhopadhyay, P. K. Panigrahi, A. Mitra, P. Bhattacharya, M. Sarkar and P. Das, 
"Optimized DHT-RBF model as replacement of ARMA-RBF model for wind 
power forecasting," in International Conference on Emerging Trends in Computing, 
Communication and Nanotechnology (ICE-CCN), 2013, 2013, pp. 415-419. 

[28] Z. Ming, S. Lianjun, T. Kuo and Z. Lin, "Time-sharing based ARMA-GARCH 
hourly electricity price forecasting approach," in International Conference on Risk 
Management & Engineering Management, 2008. ICRMEM '08. 2008, pp. 299-304. 

[29] X. Li, L. Ding, M. Shao, G. Xu and J. Li, "A novel air-conditioning load prediction 
based on ARIMA and BPNN model," in Asia-Pacific Conference on Information 
Processing, 2009. APCIP 2009. 2009, pp. 51-54. 

[30] E. Frank, L. Trigg, G. Holmes and I. H. Witten, "Naive Bayes for Regression," 
Machine Learning, pp. 1-20, 1998.  

[31] A. C. de Pina and G. Zaverucha, "Combining attributes to improve the performance 
of naive bayes for regression," in IEEE International Joint Conference on Neural 
Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational 
Intelligence), 2008, pp. 3210-3215. 

[32] Create linear regression models. Available: 
http://www.mathworks.com/help/stats/linearmodel.fit.html. 

[33] H. Chen and W. Zhao, "New Method of Order Estimation for ARMA/ARMAX 
Processes," SIAM Journal on Control and Optimization, vol. 48, pp. 4157-4176, 
March 2010, 2010.  

[34] A. Al-Smadi and D. M. Wilkes, "On estimating ARMA model orders," in IEEE 
International Symposium on Circuits and Systems, 1996. ISCAS '96., Connecting 
the World., 1996, 1996, pp. 505-508 vol.2. 

[35] G. Liang, D. M. Wilkes and J. A. Cadzow, "ARMA model order estimation based on 
the eigenvalues of the covariance matrix," IEEE Transactions on Signal Processing, 
vol. 41, pp. 3003-3009, 1993.  



73 

[36] Z. Z. Wang and D. W. Hu, "A new algorithm for the ARMA model estimation," in 
Proceedings of the 30th IEEE Conference on Decision and Control, 1991. 1991, pp. 
2030-2031 vol.2. 

[37] A. Al-Smadi and D. M. Wilkes, "Data-adaptive higher order ARMA model order 
estimation," in Proceedingson of IEEE on Visualize the Future, Southeastcon '95, 
1995, pp. 210-213. 

[38] H. Cui and R. Shan, "ARMA model parameter optimized estimate method," in First 
ACIS International Symposium on Cryptography and Network Security, Data 
Mining and Knowledge Discovery, E-Commerce & its Applications and Embedded 
Systems (CDEE), 2010, 2010, pp. 22-26. 

[39] H. Chen and W. Zhao, "Identification of both coefficients and orders for ARMAX 
system," in Proceedings of the 48th IEEE Conference on Decision and Control, 
2009 Held Jointly with the 2009 28th Chinese Control Conference. CDC/CCC 
2009. 2009, pp. 7250-7255. 

[40] D. Burshtein and E. Weinstein, "Some relations between the various criteria for 
autoregressive model order determination," IEEE Transactions on Acoustics, 
Speech and Signal Processing, vol. 33, pp. 1017-1019, 1985.  

[41] Y. Jiang, Y. Huang and X. Ye, "A new singular value decomposition method for AR 
model order selection via vibration signal analysis," in Sixth International 
Conference on Fuzzy Systems and Knowledge Discovery, FSKD '09, 2009, pp. 
567-572. 

[42] M. A. Metzger and K. Mitsumoto, "Forecasting multivariate time-series: Confidence 
intervals and comparison of performances of feed-forward neural network and 
statespace models," in International Joint Conference on Neural Networks, 1991., 
IJCNN-91-Seattle, 1991, pp. 915 vol.2. 

[43] T. B. Cline, "Identification of seasonal water supply forecasting models using 
akaike's information criterion," in 18th IEEE Conference onDecision and Control 
Including the Symposium on Adaptive Processes, 1979, 1979, pp. 874-875. 

[44] K. Ofuji and S. Kanemoto, "Price forecasting of japan electric power exchange using 
time-varying AR model," in International Conference on Intelligent Systems 
Applications to Power Systems, 2007. ISAP 2007. 2007, pp. 1-6. 

[45] C. Yan and J. Yao, "Application of ANN for the prediction of building energy 
consumption at different climate zones with HDD and CDD," in 2nd International 
Conference on Future Computer and Communication (ICFCC), 2010, 2010, pp. V3-
286-V3-289. 



74 

[46] M. Khashei and M. Bijari, "An artificial neural network (p, d, q) model for 
timeseries forecasting," Expert Syst. Appl., vol. 37, pp. 479-489, 1, 2010.  

[47] M. Khashei and M. Bijari, "A novel hybridization of artificial neural networks and 
ARIMA models for time series forecasting," Applied Soft Computing, vol. 11, pp. 
2664-2675, 3, 2011.  

[48] C. Li and J. Hu, "A new ARIMA-based neuro-fuzzy approach and swarm 
intelligence for time series forecasting," Eng Appl Artif Intell, vol. 25, pp. 295-308, 
3, 2012.  

[49] W. Wettayaprasit and P. Nanakorn, "Feature extraction and interval filtering 
technique for time-series forecasting using neural networks," in IEEE Conference 
on Cybernetics and Intelligent Systems, 2006, 2006, pp. 1-6. 

[50] M. M. Othman, M. H. H. Harun and I. Musirin, "Forecasting short term electric load 
based on stationary output of artificial neural network considering sequential 
process of feature extraction methods," in IEEE International Power Engineering 
and Optimization Conference (PEDCO) Melaka, Malaysia, 2012, 2012, pp. 485-
489. 

[51] M. Simunek and E. Pelikán, "Temperatures data preprocessing for short-term gas 
consumption forecast," in IEEE International Symposium on Industrial Electronics, 
2008. ISIE 2008. 2008, pp. 1192-1196. 

[52] K. J. Siddiqui and S. M. Nugen, "Knowledge based system for weather information 
processing and forecasting," in Geoscience and Remote Sensing Symposium, 1996. 
IGARSS '96. 'Remote Sensing for a Sustainable Future.', International, 1996, pp. 
1099-1101 vol.2. 

[53] Y. Alsultanny, "Successful forecasting for knowledge discovery by statistical 
methods," in Conference on Information Technology: New Generations (ITNG), 
2012 Ninth International, 2012, pp. 584-588. 

[54] S. S. Pappas, L. Ekonomou, D. C. Karamousantas, G. E. Chatzarakis, S. K. Katsikas 
and P. Liatsis, "Electricity demand loads modeling using AutoRegressive Moving 
Average (ARMA) models," Energy, vol. 33, pp. 1353-1360, 9, 2008.  

[55] Y. Ohtsuka, T. Oga and K. Kakamu, "Forecasting electricity demand in Japan: A 
Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data 
Analysis, vol. 54, pp. 2721-2735, November 2010, 2010.  

[56] Estimate ARIMA or ARMAX modl parameters. Available: 
http://www.mathworks.com/help/econ/arima.estimate.html. 



75 

[57] MATLAB arima class. Available: 
http://www.mathworks.com/help/econ/arimaclass.html. 

[58] MATLAB Generalized Linear Model Documentation. Available: 
http://www.mathworks.com/help/stats/glmfit.html. 


