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Introduction 1 

1 Introduction 

Heart disease is the leading cause of death in the United States. The most 

common form of heart disease is myocardial ischemia [1]. This is a condition in which 

portions of the cardiac tissue are deprived of oxygen. If the deprivation continues for 

extended periods of time, the cardiac tissue will begin to die. This tissue death is called 

infarction and is one of several conditions  commonly known as a heart attack. Tissue that 

has died is no longer functional and diminishes the mechanical pumping function of the 

heart [2, 3]. 

Early detection of ischemia is crucial because, in most cases, the effects of 

myocardial ischemia are completely reversible if detected early enough [2, 4, 5].  

Currently, many patients are not screened for ischemia due to low test accuracies or 

invasive and expensive procedures. A more accurate, less expensive, and less invasive 

screening tool is needed. General screening of patients is vital to preventing myocardial 

infarction, since ischemia can be present without exhibiting symptoms. Several possible 

methods have been proposed, which take advantage of easily recorded cardiac electrical 

signals, but these methods generally have low accuracies and report too many false 

alarms to be clinically practical. 

This thesis presents a novel approach for diagnosing a cardiac patient with 

myocardial ischemia using recordings of the electrical signals occurring in the heart. This 

method models the nonlinear components of the cardiac electrical system. Using these 

models, the algorithm generates a statistical likelihood that is used to determine whether a 

patient is experiencing ischemia. This approach is beneficial because the required 

recordings can be obtained without any invasive medical procedures. 
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1.1 Problem Description 

The purpose of this work is to develop an algorithm for the classification of 

cardiac electrical signals as indicative of ischemia or not. The classifier is supplied with 

the time in which the electrical signals indicate the possibility of ischemia. The goal of 

this work is to create an algorithm with high levels of accuracy and reduced levels of 

false alarms.  

The implemented algorithm is completely patient independent, which means that 

the learning data is independent of the testing data. The data used in this thesis is from the 

Long Term ECG Database from PhysioNet [6]. This database provides labels for the start 

time of an ST event, so the developed algorithm need not detect the start of an event 

automatically. Given an event start time, the algorithm must determine whether the event 

is caused by ischemia.  

1.2 Thesis Outline 

This thesis is divided into seven chapters. Chapter 2 provides a background of 

how the cardiac electrical system works. Chapter 2 also goes into detail about what 

ischemia is and what effects it can have on the cardiac system. Additionally, the chapter 

defines ST events as they apply to this body of work. 

Chapter 3 gives a background of the current methods used by physicians to 

diagnose ischemia and the methods that researchers have recently studied. This chapter 

also provides a description of the Computers in Cardiology Challenge. 
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Chapter 4 discusses the nonlinear signal processing methods that are used in this 

thesis to classify ST events. This chapter goes into detail about reconstructed phase 

spaces (RPS), Gaussian mixture models (GMM), and the Naïve Bayes classifier.  

In chapter 5, the Long Term ST Database that is used in this work is discussed. 

Additionally, the ten-fold cross validation technique, which is used in several of the 

experiments, is explained. Finally, this chapter provides a discussion of the overall 

classification framework that is used in the experiments.  

Chapter 6 describes the experiments conducted as part of this research. Each 

experimental section explains how the experiments were conducted, the accuracy results, 

and the meaning of the results. 

Finally, Chapter 7 gives a discussion of conclusions drawn from this work and 

offers suggestions for future work. 
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2 Cardiac Background 
 

The cardiac muscle (heart) is the center of the cardiovascular system. This muscle 

pumps life-sustaining blood to the entire body. The blood supplies oxygen and nutrients 

to the body’s organs so that they can perform their designated functions.  

The heart is controlled by a very precise electrical system. This system regulates 

the mechanical pumping action of the heart so that the entire cardiovascular system can 

function properly. If a problem occurs in the electrical system of the heart, it can have 

devastating effects for the entire body.  

2.1 Cardiac Function 

The function of the cardiovascular system is to supply oxygen to the organs of the 

body. Blood is the body’s medium for transporting oxygen to the organs. The muscular 

pump, known as the heart, pumps blood throughout the body. A complex set of arteries, 

vessels and capillaries connect the heart to the entire body. 

2.1.1 Cardiac Mechanical System 
There are four pumping chambers in the heart: the left and right atria and the left 

and right ventricles (see Figure 2.1). The purpose of the atria is to receive blood from the 

body; the right atrium receives oxygen-devoid blood from the body and the left atrium 

receives oxygen-rich blood from the lungs. The atria are separated from the ventricles by 

the tricuspid valve on the right side and the mitral valve on the left side. When these 

valves are opened, the blood from the atria flows into the ventricles. The ventricles are 

stronger than the atria because they pump the blood throughout the body. The right 

ventricle pumps the oxygen-devoid blood to the lungs to absorb oxygen and release 
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carbon dioxide. The left ventricle pumps the oxygen-rich blood to the body’s organs. The 

right ventricle is regulated by the pulmonary valve and the left ventricle is regulated by 

the aortic valve [2]. 

 
Image used with the permission from Guidant Corporation 

Figure 2.1 – The mechanical and electrical components of the heart 
 

2.1.2  Cardiac Electrical System 
The mechanical pumping action of the heart results from electrical activation 

fronts transversing the cardiac tissue. Figure 2.2 shows an example of the electrical 

signal, also known as the electrocardiogram (ECG), for a single heartbeat. The labels 

indicate the approximate location of the important waves and components of the ECG 
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signal. This figure was generated from one of the records contained in the PhysioNet 

Long-Term ECG Database (see section 5.1 for more information about the database). 
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Figure 2.2 – Electrical signal (ECG) with important wave components labeled 

The heart tissue experiences a series of stages of electrical depolarization and 

repolarization that lead to particular muscle contractions. These stages, summarized in 

Table 2.1, are described in the following paragraphs. The components of the heart 

discussed throughout this section are labeled in Figure 2.1. 

P wave 

R wave 

J Point 

S Wave 

T Wave 

Q Wave ST Segment 
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 Electrical Function Mechanical 
Function 

Electrical 
Representation 

1. SA Node emits electrical pulse   
2. Atria depolarize Atria contract Start of P Wave 
3. Electrical pulse pauses at AV Node Blood flows to 

ventricles 
End of P Wave 

4. Pulse travels down His Bundle to 
Bundle Branches 

 Q wave 

5. Atria repolarize while ventricles 
depolarize 

Atria relax, 
Ventricles contract 
pumping blood to 
lungs and body 

R and S wave 

6. Ventricles repolarize Ventricles relax T wave 

Table 2.1 - Stages of cardiac excitation with corresponding ECG representation 

 
The first stage of a heartbeat begins when the sinoatrial (SA) node of the heart 

depolarizes. During this stage, the right atrium is filled with oxygen-devoid blood that 

has returned from the circulatory system and the left atrium is filled with oxygen-rich 

blood that has returned from the pulmonary circulation. The SA node, located on the 

posterior wall of the right atrium, is the pacemaker of the heart, depolarizing at regular 

time intervals to ensure proper pacing. In a normal heart, the rate at which this node emits 

pulses is directly correlated to the amount of work that the heart as doing. As the body 

works harder and requires more oxygen-rich blood, the SA node increases its pace to 

satisfy the demand [2].  

The electrical impulse from the SA node causes the upper portion of the heart, 

called the left and right atrium, to depolarize. This depolarization causes the atria to 

contract forcing the blood from these chambers downward into the large lower portion of 

the heart, called the ventricles. The corresponding component of the electrical signal is 

the P wave. As soon as the atria have completely contracted, they begin to repolarize in 

preparation for the next beat. The electrical signature of the repolarization is not 
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discernable in the electrical signal because it occurs at the same time as the ventricular 

contraction, which yields the large QRS complex [2]. 

Following the depolarization of the atria, the depolarizing wavefronts signals 

converge at the atrioventricular (AV) node. The AV node serves two very important 

purposes. Its first purpose is to bridge the electrical signal from the atria to the ventricles. 

The second purpose is to slow the electrical depolarization to allow the blood to 

completely flow from the atria to the ventricles. The electrical depolarization propagates 

from the AV node to the His Bundles, which are located at the base of the ventricles. The 

His Bundles lead to the bundle branches and then into the purkinje fibers, which rapidly 

spread the depolarizing wavefront across both ventricles. This electrical signal moves 

rapidly across the ventricular tissue causing the muscles of the ventricles to pump the 

blood to the rest of the body. The right ventricle pumps the oxygen-devoid blood to the 

pulmonary system for oxygenation. The left ventricle pushes the oxygen-rich blood to the 

circulatory system to bring oxygen to the body. Following the depolarization and 

contraction, the ventricles begin to repolarize to prepare for the next cycle [2].  

As long as the heart is operating properly, the process described above repeats 

rhythmically with a natural variability. Generally, the resting heartbeat of a healthy 

person is about 60-80 BPM [7]. If the electrical system of the heart does not properly 

function, the heart’s rhythm can become abnormal. This directly affects the heart’s ability 

to supply blood to the entire body. To monitor for such problems, physicians record and 

analyze the cardiac electrical signals using the electrocardiogram (ECG).  
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2.2 Electrocardiogram 

The electrocardiogram (ECG) is a recording of the electrical signals that control 

the cardiac function. By analyzing these signals, clinicians can monitor the rhythmic 

function of the cardiac system. 

In order to record an electrocardiogram (ECG) from a patient, a number of 

electrodes are placed on the patient’s chest. The number of electrodes used can vary 

between two and fourteen depending on what parts of the heart the physician would like 

to focus the examination. Figure 2.3 describes how the three most common ECG leads 

(I,II, and III) are recorded [2]. The ECG measures the change in the electrical potential 

across the electrodes. The recorded potential is converted to a waveform after signal 

filtering and amplification. In this work, each waveform will be referred to as a lead. The 

Long Term ST database, which is used in this work, provides either two or three leads for 

each patient.  

  

Figure 2.3 – Einthoven’s triangle showing how leads I, II, and III are recorded 

2.3 Ischemia 

Ischemia is a condition in which the heart requires more oxygen than the body is 

able to supply. This can result from an increased demand for oxygen or a decrease in the 

- + I 

- 

+

- 

+ II 
III 
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supply of oxygen. A decrease in oxygen supply can be caused by an artery blockage, 

blood clots, and spontaneous artery spasms. Blockages of a coronary artery, which supply 

oxygen rich blood to the heart, are known as atherosclerosis. This condition is caused by 

a buildup of fat and cholesterol, known as plaque. In some cases a plaque buildup will 

cause a crack in the walls of the arteries. At the site of the crack a blood clot may form, 

further restricting blood flow. In the case of an artery spasm, known as angina, an artery 

may spontaneously and temporarily contract restricting or stopping blood flow. When 

any of these three conditions occur, the heart is deprived of the oxygen it needs to 

function [8]. 

Quite often, the causes of ischemia may be temporary. As blood flow to the heart 

is restored, the cardiac oxygen perfusion (absorption) returns to normal and the tissue 

returns to a healthy state. However, approximately six hours of oxygen deprivation is all 

that is needed for the tissue to sustain irreversible injury. This injured cardiac muscle 

tissue becomes scar tissue, which leads to a diminished pumping capability and modified 

electrical propagation characteristics. If the infarction (tissue death) becomes severe 

enough, the heart will no longer be able to adequately supply blood to the entire body. 

The death of heart tissue, commonly known as a heart attack, often leads to strokes and 

patient death [3, 4]. 

Myocardial ischemia is commonly seen as a warning sign of cardiac problems. It 

is beneficial for patients and doctors to be able to recognize the signs and symptoms of 

ischemia before permanent tissue death has occurred. While ischemia often results in 

chest pain, there are many cases where the patient experiences no pain. This is known as 

silent ischemia. Because of silent ischemia, it is important to screen for ischemia even in 
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the absence of symptoms, especially for patients who are at risk due to family history or 

health problems. If the warning signs are recognized, the patient can take steps to prevent 

a heart attack [9] 

2.4 ST Events 

The literature has established that there is a strong correlation between elevation 

and depression of the ST portion of the ECG signal and cardiac problems related to 

ischemia and infarction [10]. In 1920, Pardee first claimed that ST elevation was a sign of 

ischemic problems [10]. According to Fozzard and Janse, the abnormality is due to the 

way that ischemic tissue conducts electricity [11, 12]. During the period that the tissue is 

polarized, current flows from the ischemic tissue towards the normal tissue. When the 

portion of the heart affected by ischemia begins to depolarize, the current flow switches 

from the normal tissue to the ischemic tissue. This current flow causes the abnormality of 

the ST segment during the period in which it is normally a flat waveform [11-14]. It is 

generally accepted that an ST deviation or elevation greater than 1 millivolt may indicate 

the presence of ischemia. It is important to note that many other conditions and 

circumstances can cause this elevation and depression [15]. 

Based on the research previously described, many systems monitor the elevation 

or depression of the ST segment. When significant changes of the ST segment are noted, 

the device records the time of occurrence. Using this technique, this system can provide a 

simple way to look for ischemic events. However, many false alarms are present because 

other occurrences such as former heart damage and position changes of the patient can 

cause similar ST changes. Additionally, it is not possible to attach ECG leads in the same 

position for every test. This leads to variation in the recorded signals [16]. 
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To compare records from multiple patients, a patient independent function of the 

ST level is used. The standard value, called the ST deviation, is calculated as the 

difference between the ST level and an established ST reference function (shown in 

Figure 2.4). PhysioNet (an organization for the research of physiological signals) has 

defined the ST reference function. The baseline or starting value of the refe rence function 

is chosen as the stable ST level near the beginning of the record. Next, an expert must 

annotate the record labeling points of ST deviation that are not clinically relevant. For 

this work, clinically irrelevant points are periods where the ST deviation is not due to 

ischemia, heart rate-related changes, and noisy ST events. For these clinically irrelevant 

ST deviations, the ST reference function is designed to compensate for the deviation so 

that the ST deviation shows no change. The resulting ST deviation can easily be 

compared with the standard deviation of other records calculated using the same method 

[17, 18]. 

 
Figure 2.4 - Example of ST deviation calculation 

 

Each ST level monitoring device has specific level criteria that it uses to define an 

ST event. The creators of the PhysioNet Long-Term ST Database, which is used in this 

research, defined an ST event using the three criterion shown in Figure 2.5. First, the ST 

 

ST Reference 
Function 

ST  
Deviation 

ST Level 
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event begins when the ST deviation exceeds 50µV. Second, the ST deviation must exceed 

100µV for at least 30 seconds during the event. Third, the ST event ends when the ST 

deviation drops below 50µV for at least 30 seconds. All three criteria must be met in the 

described order for an event to be labeled [17, 18].  

 

50µV 

100µV 

> 30 sec 

> 30 sec  

Figure 2.5 - Definition of ST Event 
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3 Research Background 

 There are several methods currently used by clinicians to monitor and detect 

ischemia in cardiac patients. These methods have varying levels of accuracy, cost, and 

difficulty in administering. Section 3.1 gives an overview and analysis of the methods 

that are currently being used. Section 3.2 explains some of the methods that are currently 

being researched to solve the ischemia classification problem. The last section of this 

chapter provides an overview of the 2003 Computers in Cardiology Challenge, which 

prompted the research of this thesis. 

3.1 Current Clinical Methods 

The procedures available to physicians for diagnosis of myocardial ischemia 

range from very accurate but expensive and often invasive to relatively inexpensive but 

indecisive. Each method has its benefits and drawbacks, so physicians must select the 

appropriate method on a patient-by-patient basis. Frequently used methods include 

coronary imaging (angiography) [19-22] and imaging using echocardiograms [23], which 

are both very accurate. The use of ST (the waveform segment connecting the S wave to 

the T wave in the cardiac electrical signal) event alerts [16] and exercise stress testing 

[24] are examples of lower cost methods that have lower levels of accuracy. 

3.1.1 Coronary Angiography 
The most accurate method to detect myocardial ischemia is coronary angiography 

[22]. For this procedure, an incision is made near the patient’s groin. A catheter is 

inserted into an artery through this incision. The catheter is then maneuvered through the 

artery to the location that the physician would like to examine. Typically, the catheter 
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will be used to examine coronary arteries (arteries that supply blood to the heart muscle), 

the heart’s valves, and the inside of the cardiac chambers. Figure 3.1 shows how a 

catheter may be maneuvered to examine a coronary artery. Once the catheter is in place, 

an X-ray sensitive dye is released and X-rays are taken. The X-rays show highlighted 

images of the area where the dye was released. This allows a cardiologist to look for 

constriction of arteries or blockages due to fatty buildup known as plaque. These 

conditions restrict blood flow to the heart and lead to ischemia. Several injections and 

subsequent X-rays may be required for the physician to complete the examination. This 

method is utilized because of its high level of accuracy with sensitivity between 90% and 

98% and specificity between 95% and 98% [21]. The drawbacks are the level of intrusion 

into the patient’s body, the requirement that the patient abstain from food and drink for 6 

to 8 hours, and the average cost of $17,598 [19-22].  
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Reproduced with permission 

http://www.americanheart.org/downloadable/heart/1046715993947WhatIsaCoronaryAngiogram.pdf 

© 2004, Copyright American Heart Association 

Figure 3.1 - Figure showing how catheter is inserted for coronary angiography 

 

3.1.2 Echocardiograms 
A second highly accurate method of myocardial ischemia detection is the use of 

echocardiograms [23]. An ultrasound transducer emits ultrasound waves that echo off the 

internal organs of the body. The transducer receives the echoes and the echocardiogram 

machine converts the received data into 2D and 3D moving images. A physician can then 

use these images to examine abnormalities in the cardiac tissues. While this system 

Catheter entering the 
coronary artery 
through the aorta 
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cannot view the blood flowing through the heart, as the coronary angiography can, 

abnormalities of the heart’s motion can indicate ischemic conditions [25]. The sensitivity 

for echocardiography for detection of ischemia varies between 80% and 90% and the 

specificity varies between 75% and 100% depending on the extent of the ischemic 

changes to the cardiac tissue [26]. This method of detection is relatively expensive at 

between $250 and $1000 and requires a physician to examine the results [27]. 

 

Figure 3.2 - Example of echocardiogram with ECG beat along bottom [28] 

 

3.1.3 Exercise Testing 
Exercise testing of a patient is a method of stress testing the functions of the heart [24]. 

The patient walks on a treadmill or rides a stationary bicycle with an ECG monitor 

attached to their chest. This is an effective way of forcing the cardiac muscle to pump 

blood more rapidly thus requiring more oxygen to function. If there are blood flow 

restrictions to the cardiac muscle, they will become more pronounced as the heart works 

harder. The recorded ECG will show evidence of these changes as a greater ST deviation 

than normal [24]. Figure 3.3 shows four ECG waveforms from exercise testing that 

exhibit signs of ischemia. The advantages related to this method of testing are the ease at 
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which it is administered and its low cost of only $200 to $300. The drawbacks are: it 

requires a patient to endure the intense physical test that may be difficult depending on 

other health conditions, it requires a physician to carefully analyze the recorded ECG, 

and it is much less accurate than other methods with a sensitivity of 68% and a specificity 

of 77% [29, 30]. 

 
© 1999, Copyright American Academy of Family Physicians 

Figure 3.3 - ECG waveforms that show indication of ischemia during exercise 
testing [31] 

3.1.4 ST Level Alerts 
The final method discussed here is the use of ST level alerts [15]. This is an easy, 

but imprecise way of detecting the possibility of myocardial ischemia. Because of high 

sensitivity but low specificity, the results of this diagnostic tool must be verified by 

another detection method. Due to physiology changes caused by the oxygen deprivation 

of the cardiac tissue, the ST segment of the ECG signal can become abnormal (see 

section 2.4). Using long-term (24-48 hour) ECG recording devices, the ECG signals are 

collected, and the ST events (a period when the ST segment is abnormal according to 

specific measures, for more information see section 2.4) are noted. A cardiologist later 

reviews the events and the patient’s cardiac history to determine if ischemia is likely. If 
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the test indicates the presence of ischemia, further tests, such as those discussed above, 

can be conducted to verify the preliminary diagnosis. While this method is more cost 

effective with a cost under $250 and easy to administer, it has lower accuracy with a 

sensitivity around 46% and a specificity around 91% and positive results can be confused 

with other causes of ST level changes [27, 32-34]. It is also possible that the patient will 

experience no ischemic episodes during the time that the ECG is recorded, even though 

myocardial ischemia exists. 

3.2 State of ECG Research in Detecting Myocardial Ischemia 

Significant research has been undertaken to develop a more accurate, less 

invasive, and less expensive method for detecting myocardial ischemia. Much of this 

research focuses on the use of ECG signals. These methods build models or use 

thresholds of the ST deviation to determine if a patient’s ECG signal might indicate 

ischemia. The fo llowing section provides two examples of these methods. 

3.2.1 Neural Network Classifier 
Maglaveras et al [35] have investigated a method for ischemia detection that uses 

supervised neural networks. The first step in this algorithm was to extract the ST segment 

(section of the ECG waveform between the S wave and the T wave) from the ECG 

waveform (see Figure 3.4). The developers chose to use 160ms (40 samples at a sampling 

rate of 250Hz) following the J-point as the length of the ST segment. Using the ST 

segment and the ST reference function from PhysioNet [17], the ST deviation was 

calculated (see section 2.4). The 40 ST deviation samples were grouped into 20 

consecutive pairs. Each of the two paired values were averaged leaving 20 values. These 

values were the inputs to a three layer neural network. The neural network consisted of an 
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input layer with 20 neurons (one for each input), a hidden layer with 10 input neurons (10 

was chosen empirically based on best accuracy results and training time), and an output 

layer with two neurons. The two output neurons each provide a value between zero and 

one, which is rounded to either zero or one. The four possible outputs are: (1,1) 

unclassifiable, (1,0) ST depression, (0,1) ST elevation, (0,0) normal beat.  

Since one of the developer’s goals was to create an algorithm that could be 

quickly trained, an adaptive back propagation algorithm was used to train the classifier. 

This method of classification adjusts the neural network weights so as to minimize the 

mean square error between the output and the target vectors of the training set.  

‘Learning
Set’

Extract ST
Segment

 (40 samples)

Find average of
consecutive pairs

(20 samples)

Train Neural
Network Error = 0 Save Weights

No

Yes

 

Figure 3.4 - Flowchart of Neural Network Learning 

 
 The classification procedure for this algorithm follows the same ST segment 

extraction and averaging of the training process. Once the beats are extracted, they are 

input into the neural network. If the output layer produces (1,0) or (0,1) the beat is 

classified as ischemic, otherwise it is classified as non- ischemic. 

‘Test Set’
Extract ST
Segment

 (40 samples)

Find average of
consecutive pairs

(20 samples)

Neural Network
Classification

 

Figure 3.5 - Flowchart of Neural Network classification 

 
 The classifier was trained and tested using two exclusive sets of records from the 

European ST Database. The results are shown in Table 3.1. The paper did not provide 
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specificity and no confusion matrix was provided so, positive predictive accuracy is 

offered [35]. 

 
Sensitivity Positive Predictive Accuracy 

73.0% 69.5% 

Table 3.1 - Classification results for Neural Network method applied to the 
European ST Database 

 

3.2.2 Threshold Classifier 
A second technique for classification developed by Langley et al [36] uses the 

characteristics of the ST deviation to classify ST events (ST deviation and events are 

explained in section 2.4). The event classification is determined by several threshold 

criteria. Figure 3.6 shows the criteria that must be met for an ST event to be classified as 

ischemia. The event begins when the ST deviation first exceeds 50µV. The ST deviation 

must then rise above 100µV and stay above that threshold for at least 30 seconds. The 

event ends when the ST deviation drops below 50µV for at least 30 seconds.  

 
 

Figure 3.6 – Langley et al threshold classification algorithm 

 

50µV 

100µV 

> 30 sec 

> 30 sec 
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 Sensitivity Specificity Accuracy 
Training Set 99.0% 88.8% 91.1% 
Test Set 99.0% 93.3% 95.6% 

Table 3.2 - Accuracy results for the Langley et al method 

 
The data used for this study was the Long Term ST Database. When run on the 

‘Training Set,’ the classification algorithm had a nearly perfect sensitivity of 99.0% but 

the specificity was 88.8%. When the algorithm was applied to the Test Set the sensitivity 

remained at 99.0% but the specificity increased to 93.3% [36]. 

3.3 Challenge Description 

The Computers in Cardiology Challenge (CINC) is an annual contest in which 

members of the research community compete to solve a problem which has to date not 

sufficiently been solved [6]. The 2003 challenge was to design an algorithm which could 

classify ST events as ischemic or non- ischemic using only the data of a long term two or 

three lead ECG (the electrocardiogram is a plot of the electrical fields occurring in the 

cardiac muscle, see section 2.1) signal. The challenge coincided with the release of the 

Long Term ST database from PhysioNet [18]. This database was created to aid in the 

design of algorithms that detect ischemia using ECG signals. Forty-three (the Training 

Set) of the 86 records (entire dataset) contained in the database were released for use in 

algorithm design. The other 43 records (Test Set) were withheld to be used for scoring 

the algorithms.  

For the CINC challenge, significant ST events are determined by PhysioNet [17] 

using the criteria shown in Figure 3.7. The onset of an event occurs when the ST 

deviation exceeds 50µV. The ST deviation must then exceed 100µV for at least 30 

seconds. The end of the episode is reached when the ST deviation remains below 50µV 
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for at least 30 seconds. After the ST episodes were located in the data using this criteria, 

independent experts met to reach a consensus on labeling each event as caused by 

ischemia or one of three types of non- ischemic factors. The three types of non-ischemic 

classification are axis shift, conduction change, and heart rate-related ST shift. 

 

Figure 3.7 – Definition of ST Event 

 
For each record (a record consists of two or three signal long-term ECG 

recordings for a single patient, see section 5.1) in the training set two ST event label files 

are provided. The .EPI file contains the event index, the time when the event begins, and 

the channel that the experts believe will most likely show evidence of ischemia. The 

event time label indicates the time before the first beat with an ST level. The second file, 

the .EPR file, contains all of the same information plus a label for the event as ischemic 

or non- ischemic. The .EPI files are provided for the Test Set, but the .EPR files are not. 

50µV 

100µV 

> 30 sec 

> 30 sec 
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4 Nonlinear Signal Processing Theory 

The following chapter describes the nonlinear signal processing methods used in 

this thesis to model and classify the ECG ST events. The first section describes the 

reconstructed phase space method used to transform the time series data into the time 

embedded phase dimension. The next section describes the Gaussian mixture model 

(GMM) method, which is used to model the constructed phase spaces. The final section 

introduces the Naïve Bayes classifier, which is used to classify signals into classes using 

the learned GMMs. 

4.1 Reconstructed Phase Spaces 

In a time series, such as the ECG signal, it is sometimes necessary to search for 

patterns not only in the time series itself, but also in a higher dimensional transformation 

of the time series. The reconstructed phase space (RPS) is an example of such a 

transformation. An RPS is an n dimensional space in which a signal is plotted against 

time-delayed versions of itself. Each point in the phase space is calculated according to: 

 ( 1)[ ], (1 ( 1)n n n dn x x x n d Nτ τ τ− − −= = + −x L … , (4.1) 

where N is the dimension of the space, t  is the time delay, and d is the dimension. The 

entire phase space is generated by: 
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In 1980, Takens proved that a reconstructed phase space is topologically 

equivalent to the original state space if the embedding dimension is 2d + 1, where d is the 

state dimension of the original system [37]. Sauer et al generalized this requirement by 

showing that if the dimension of the RPS is greater than two times the box counting 

dimension of the original system, topological equivalence holds [38]. The existence of 

topological equivalence means that the reconstructed phase space transformation is 

unique or one-to-one. In classification problems, this theory is important because the 

reconstructed phase space transformation does not destroy the dynamical information of 

the system. 

Figure 4.1 demonstrates how a signal is delayed by consecutive time lags. For 

purposes of visualization the signals have been separated along the y-axis. As the figure 

shows, xn is not delayed, xn-5 is delayed by 5 samples, and xn-10 is delayed by 10 samples. 

The points labeled with boxes are all at the same sample index after the delays. Each time 

index is transformed into one point in the embedded space; so the three labeled points 

would create one point in a three dimensional RPS. Figure 4.2 shows an example of a 

two-dimensional reconstructed phase space. The signal xn is first delayed by 25 samples. 

Then the point from each time index of xn is plotted against the point from the same time 

index of the delayed signal. For example ( )1nx is plotted against ( )25 1nx − .  
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Figure 4.1 - An ST segment and T wave with 0 delay, 5 time step delay, and 10 time 

step delay (shown on the vertical axis). 
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Figure 4.2 - The reconstructed phase space of a set of ST segments 
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In order to create a reconstructed phase space, the dimension and the lag need to 

be determined. The proper determination of these parameters can have a significant effect 

on the classification performance. Selecting values that are too high adds complexity and 

increases the amount of data needed for an experiment. If the values selected are too low, 

the complex nature of the problem may not be captured in the phase space. 

Two common methods used to estimate the proper lag are: the first minimum of 

automutual information and an empirical method. The automutual information method 

determines the information that is shared between consecutive integer lag choices [39]. 

The first minimum of the mutual information is used as an estimate of the optimal lag. A 

second method estimates the lag empirically. The lag is selected by examining the results 

of multiple classification experiments. In each experiment a different lag is studied and 

the classification accuracy is determined. The lag that provides the highest accuracy is the 

one that is selected. 

The process for choosing the dimension is similar to that of determining the lag. 

The dimension can be selected using the false nearest neighbors or by an empirical 

method. The false nearest neighbors are points in a phase space of n dimension which are 

near each other, but are not near each other in a phase space of dimension n + 1. The 

number of points falsely near each other indicates whether a higher dimension should be 

used. A threshold on the percentage of false nearest neighbors is used to select the 

dimension. The empirical method operates the same as the lag determination. Multiple 

experiments are conducted and the experiment with the highest accuracy indicates the 

dimension to be chosen. 
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4.2 Gaussian Mixture Models 

A Gaussian mixture model (GMM) is a set of N multidimensional Gaussian 

distributions. Figure 4.3 gives an example set of eight GMMs on top of the two-

dimensional ECG ST segment RPS from Figure 4.2 (the figure has been zoomed to make 

it easier to see). The principal axes of each ellipse are labeled for each GMM. The set of 

GMMs approximately models the distribution of the data. 
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Figure 4.3 - The Reconstructed Phase Space of Figure 4.2 with overlay of Gaussian 

Mixture Models 

The GMM is defined as: 
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where mw  is the mixture weights ( 1mw =∑ ), M is the number of mixtures, and 

( )N ; ,m mx µ S  is a normal distribution with mean mµ  and covariance matrix mS . Using 

multiple Gaussian distributions, any distribution of data can be modeled [40]. The 

number of distributions to use in a GMM model is a parameter dependent on the 

complexity of the distribution of the data to be modeled. This number can be determined 

empirically, by running multiple classifications that utilize different numbers of GMMs. 

The classification with the highest accuracy is the one that is selected. 

The weights, means, and covariance matrix of the GMM are estimated using the 

Expectation Maximization (EM) algorithm [41]. The method begins with initial values 

for each parameter, then iterates through the available data to find the Maximum 

Likelihood (ML) estimate. The formulas used for the estimation are: 
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where M is the number of mixtures, pm is the probability distribution function, and N is 

the number of points in the signal [41].  
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4.3 Naïve Bayes Classifier 

The Naïve Bayes classifier [42] uses the principles of Bayes’ law to compute the 

class with the highest conditional likelihood. Bayes’ law states:  

 ( ) ( )
( )

| ( )
| n

n
n

p class p class
p class

p
=

x
x

x
, (4.5) 

where ( )| np class x is the conditional probability of a specific class given a point in the 

RPS. Since the ( )p x  term is simply a normalizing value, it is left out of the equation 

when comparing class probabilities. So, the Naïve Bayes classifier becomes: 

 ( ) ( )1 2argmax , |
i

i n i
class AllClasses

class p class p class
∈

= x x x… , (4.6) 

where AllClasses is the set of possible classes and iclass is the ith class.  

In order to calculate ( )1 2, |n ip classx x x…  it would be necessary to have a large 

set of training data for every set of RPS points and class combination. In most cases, the 

available data will not be sufficient. For this reason, the Naïve Bayes classifier relies on 

the assumption that the features are conditionally independent with regard to class [43]. 

This means that the probability that a set of features occurs given a class, is simply the 

product of the each of the conditional probabilities, ( )|n ip classx . The Naïve Bayes 

classifier becomes: 

 ( ) ( )
1 ( 1)

argmax |
i

N

i n i
class AllClasses n d

class p class p class
τ∈ = + −

= ∏ x , (4.7) 

where N is the number of points in the RPS and d is the dimension of the RPS. The 

conditional probabilities ( ( )|n ip classx ) can be learned from the training data of the 
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experiment. In this way, the class of a given RPS is compared with the learned models 

and then classified. 



Data and Methods 32 

5 Data and Methods 

This chapter describes the dataset and the methods used in the proposed 

algorithm. The first section describes the Long-Term ST Database, which contains the 

ECG signals used for training and classification. The second section describes the pre-

processing techniques that are necessary to prepare the data for the classifier. The final 

section outlines the procedure used for training and classification with the proposed 

algorithm. 

5.1 Data 

The dataset used in conducting the experiments described in this research is the 

Long-Term ST Database from PhysioNet. The database contains 86 Holter ECG 

recordings from 80 independent patients. Holter recordings are ECG recordings that are 

recorded using portable recording devices, generally taken over a long period. These 

recordings were selected from the Holter libraries at Beth Israel Deaconess Medical 

Center in Boston, Physiolab (Laboratory of Biosignal Processing) of the Institute of 

Clinical Physiology in Pisa, Brigham and Womens Hospital in Boston, and the Zymed 

company. These records vary in length from 20 to 24 hours. Each record contains either 

two or three ECG leads. The records are digitized at 250 Hz with 12 bit resolution [17, 

18]. 

In order to create a database that accurately models what a classifier might see in 

a clinical setting, the records chosen for insertion into the database were carefully 

screened. The records that are included have at least one of the following ST events:  
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• Ischemic ST episodes 

• Non-ischemic ST episodes due to heart rate changes  

• Non-ischemic ST shifts due to axis shifts or changes in ventricular 

conduction 

This creates a rich set of clinically relevant scenarios for training and testing [17]. 

The Long-Term ST Database creators have split the records into two groups. To 

allow a broad range of researchers to develop algorithms to classify ischemia, one-half of 

the database is available to the public. This half contains 43 records from 42 of the 

database’s 80 patients. This portion of the database, called the Training Set was to be 

used to train algorithms for the Computers in Cardiology Challenge described in section 

3.3. The second half of the database is available for purchase. This half was purchased for 

use in this study. The second half, called the ‘Test Set,’ contains the remaining 43 records 

from 38 distinct patients. The breakdown of the episodes in the database is shown in 

Table 5.1. As the table shows, 3266 total episodes were used during the training and 

testing portions of this research. 

 Training Set ‘Testing Set’ Total 
Ischemic 331 723 1054 
Conduction Change 441 454 895 
Heart Rate-Related Shift 137 92 229 
Axis Shift 383 705 1088 
Total 1292 1974 3266 

Table 5.1 - Breakdown of number of events for the Training and Test portions of 
the database 

 
To allow researchers to focus on algorithm development and not data annotation, 

the database has been filtered and fully annotated. Filtering was conducted to remove the 
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baseline variability and frequencies over 55Hz (assumed to be noise). Next, the J-point of 

each beat was determined based on the start of the “most flat” portion of the beat 

following the R wave. These automatically determined J-Points were edited by experts. 

Next, a stable ST level near the start of the waveform was used to determine the global 

ST reference or baseline. Cardiology experts then examined the ST level throughout the 

signal and marked large ST level changes that are not related to ischemia, heart rate 

changes or conduction and axis shifts. This allows the ST deviation parameter to reveal 

important ST level changes. The ST deviation throughout the record is found by 

subtracting the ST level from the ST reference function. The ST reference function, ST 

level, and ST deviation are all provided in Long-Term ST database annotation files. The 

annotation files also provide labels of the R-wave peaks and the ST events (see section 

2.4) [17].  

5.2 Pre-processing 

The Long-Term ST Database, used in this research, contains records that are 

between 21 and 24 hours long. The algorithm proposed by this thesis uses small segments 

of the waveform. In order to extract these waveform segments, several steps are needed 

to process and filter the data. The overall preprocessing stage can be represented as: 

Determine missing
J-points using

WQRS and lead
two

Extract J-points
from annotations

Filter into
Sub-

bands if
desired

Normalize
data if

desired

Data Ready
for Training or
ClassificationFrequency

Bands
of Signal  

Figure 5.1 - Flowchart of pre-processing stage 
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The first step in pre-processing is to determine the J-point (point where the ST 

segments begins – see section 2.1.2) for all ECG beats that are to be studied. For this 

work, an equal number of beats surrounding the event label are used (N total beats). 

Figure 5.2 shows how data is extracted from the ECG records. As the figure shows, each 

record has two to three signals. The algorithm proposed by this thesis extracts the ST 

segment and T wave from each signal for each of the N beats surrounding the labeled 

event. The boxes in the figure show the segment of the signal extracted from each beat 

index. The number of beats used is symmetric on both sides of the event label. The 

algorithm uses 
1
2

N  beats ( n− ) before the labeled event time. The ST segment and T-

wave are then extracted from the 
1
2

N  beats ( n+ ) after the event time.  

Signal 1

Signal 2

Signal 3

Event Label

Beat Index -1Beat Index -2 Beat Index +1 Beat Index +2

Filter Bank

 

Figure 5.2 - Description of how ST-T complex (segment in box) is extracted from all 
signals and several beats surrounding the labeled event 
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The majority of J-points are labeled in the annotation files, but several beats are 

not labeled due to noise in the ECG signal. Often, localized noise can affect a single lead 

without affecting the other leads. Because the J-point annotations in the database were 

computed using only lead one, it is possible to discover more J-points by examining lead 

two. To attempt to compute the missing J-points, a program called WQRS, provided as a 

part of the PhysioNet toolkit [44], is used. This program allows the specification of lead 

two for detection. If using this technique does not provide a J-point for the desired beat, 

the next J-point forward in time is used, as shown in Figure 5.3.   

 

Figure 5.3 - Describes how J-point is found in presence of noise on leads one and two 

 
The detected J-points are used to supplement the annotation files so that the ST segment 

and T wave can be extracted from all necessary beats. 

 In order to reduce computational complexity, the end of the T-wave is not 

calculated for each individual beat. Instead, the 400ms following the J-point is extracted. 

This time period effectively captures the desired signal portion. 

Once the J-points have been calculated and the ST-T segments have been 

extracted, there are several options available for processing the data. These procedures 

are not necessary in all cases and vary with each specific experiment. Adjusting the data 

Event Label 

Noise prevents 
J-point detection 

First available J-point 
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to have a zero mean and unit variance in order to normalize the data. To make the data 

have zero mean, the calcula ted mean of the data is subtracted from the signal. To make 

the signal have a unit variance, the signal is divided by the calculated standard deviation 

of the signal (see section 6.4 for more information on these calculations). Normalizing 

the signal can help to reduce the effects of baseline and amplitude differences between 

patients. 

A second option for processing the signal is to filter the ST-T complexes into 

frequency sub-bands. This procedure can help a classifier to focus on important dynamics 

found in distinct frequency bands of the signal. Figure 5.4 describes the filtering process 

used. First, the frequency boundaries to be used must be determined. This is done by 

examining previous research data and a power spectral density plot of the data (see 

section 6.5 for more details on choosing filter boundaries). The goal is to find frequency 

bands that will divide the signal into “important” energy bands. Once the filter 

boundaries have been determined, each of the N beats of the two to three signals for each 

event is filtered into bands using an infinite impulse response (IIR) filter. This creates 

nn N f× × discrete filtered signals, where n is the number of signals in the record and fn is 

the number of frequency bands used. 
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Figure 5.4 - Description of how signals are filtered 
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5.3 Classification Algorithm 

This section describes the basic framework of the classification algorithm used in 

this research. The research conducted for this thesis focuses on the ST segment and the T 

wave as indicators of ischemia. Research has shown that deviations in these areas can be 

indicators of ischemia or, in later stages, infarction [2, 10-12, 14, 15]. Current techniques 

use these deviations directly to diagnose ischemia, but they provide too many false 

positives. The proposed method uses the ST segments and T wave in a novel way to 

improve detection accuracy.  

The training algorithm flow chart is shown in Figure 5.5. After the pre-processing 

described in the previous section, a set of fn frequency bands are generated for each of 

ECG lead. This means that there is a total of nf n N× × total signals for each ST event, 

where n is the number of signals in the record and N is the total number of surrounding 

beats used. The first step in training the classifier is to embed each one of these signals in 

a five dimensional reconstructed phase space with a time lag of five (see section 6.2 for 

information on parameter selection). These RPSs are then grouped by class and each 

matching RPS is overlaid to create a global RPS for that class. This results in 

nf n N M× × × reconstructed phase spaces, where fn is the number of frequency bands, n 

is the number of signals in the record, N is the number of beats used, and M is the total 

number of classes used. 

The next step in the training process is to learn the GMM model parameters. One 

GMM with 25 (see section 6.2 for information on parameter selection) mixtures is trained 
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for each of the global RPSs. This creates nf n N M× × ×  GMM classifiers or 

25nf n N M× × × ×  total models, where fn is the number of frequency bands, n is the 

number of signals in the record, N is the number of beats used, and M is the total number 

of classes used. 

 

Figure 5.5 - Flowchart of algorithm used in training 
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Figure 5.6 - Flowchart of algorithm used in classification 

 
 A flowchart of the classification algorithm is provided in Figure 5.6. As in the 

training process, the signal to be classified is broken into its frequency band, waveform 

index, and lead combinations. Again, this creates nf n N× ×  signals for each event, where 

fn is the number of frequency bands, n is the number of signals in the record, and N is the 

number of beats used. Each combination for the event to be classified is embedded into a 

reconstructed phase space. Every point of each of the nf n N× ×  RPSs is compared with 

the models for all of the M classes. Every classifier outputs a likelihood value that the 

event belongs to that class. The log of each classifier output is calculated. These log-

likelihoods are then summed over each class according to: 
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 10
1

ˆlog i
i M

l
=
∑
…

 (4.8) 

 

This generates an overall log- likelihood result for each of the M classes. The class with 

the highest summed log-likelihood is selected as the estimated class according to: 

 ˆˆ max { ( )}
1

lii C
ω =

=
x… , (4.9) 

where x is the test data vector and M is the number of classes [42].  
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6 Experiments 

 This chapter describes the experiments used to validate the proposed method for 

ischemia classification discussed in chapter 5. Each section contains an explanation of the 

experimental procedure, a table of results, and a discussion of how the results contribute 

to the overall study. 

The first section of this chapter expla ins a technique used to validate the proposed 

algorithm. Section 6.2 explains how several important parameters are determined. 

Section 6.3 defines the set of baselines used for comparison to the results of this study. 

Section 6.4 evaluates the normalization of the signals input to the classifier. Section 6.5 

evaluates the filtering of the signal into frequency sub-bands. Section 6.6 describes a 

validation of the hypothesis that using three classes (one ischemic and two non- ischemic) 

will improve the classification accuracy over classifications with two classes. Section 6.7 

describes the experiment to validate the use of multiple beats surrounding the labeled ST 

event. The final section of this chapter provides a summary and discussion of the 

experimental results. 

6.1 Ten-Fold Cross Validation 

In experiments where the Test Set is not available, it is necessary to use a method 

of algorithm validation that is data/patient independent, but does not need a separate set 

of data for testing. The method used in this research is called ten-fold cross validation. 

The first step in this method is to separate the Training Set into ten groups (folds). The 

folds are divided to match, as closely as possible, the distribution of events and episodes 

of the entire ‘Training Set.’ The classifier is trained on nine of the ten folds. Then the 
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learned models are used to classify the tenth fold. This is repeated 9 more times, each 

time leaving out a different fold. In the end, 10 patient independent classifications have 

been conducted. The classification results are combined to calculate the overall 

accuracies.  

Using ten-fold cross validation maintains patient independent classification 

without the availability of the ‘Test Set.’ This allows for an effective validation of 

possible algorithms while not analyzing the ‘Test Set.’ Keeping the Test Set aside until 

the final algorithm validation is important in making sure that the algorithm is not 

tailored to the data of the ‘Test Set.’ Thus, ten-fold cross validation is an accurate way of 

simulating ‘Test Data’ results when a testing dataset is not available [42, 45]. 

Implementing this procedure increases the likelihood that if the developed algorithm has 

high classification accuracy on the ‘Test Set,’ it will be able generalize to other data sets. 

It also allows results from classifications run on the Training Set to generally be 

compared to the Test Set results. 

6.2 Parameter Determination 

 In order to create an accurate classifier of the ST event data, the parameters of the 

reconstructed phase space (RPS) and Gaussian mixture model (GMM) are adjusted for 

the data that is to be classified. The three parameters determined are the lag of the 

reconstructed phase space, dimension of the phase space, and the number of GMMs used 

for each class. There are several methods for estimating these parameters, refer to section 

4.2 for more details.  

In this work, the values for the model parameters are determined empirically. A 

simple version of the classification algorithm described in chapter 5 is run for different 
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combinations of parameters to determine which one provide the best overall accuracy. No 

normalization or sub-band filtering is done. Ten-fold cross validation is used to take full 

advantage of the training data.  

Table 1 shows the results of a classification series over different numbers of 

mixtures. In this experiment, a lag of three and a dimension of three are artificially 

chosen. The results in the table below show that both 5 and 25 mixtures provide high 

levels of accuracy. Because the accuracies are only 0.7% different, a future experiment 

will use both values to determine the overall best. 

Number of 
Mixtures  

Dimension Lag Sensitivity Specificity 

2 3 3 67.2% 66.3% 
3 3 3 67.4% 70.1% 
4 3 3 68.9% 70.0% 
5 3 3 70.0% 72.8% 
6 3 3 68.9% 70.6% 
7 3 3 59.9% 69.3% 
8 3 3 65.9% 70.0% 
9 3 3 68.5% 71.1% 
10 3 3 68.6% 70.4% 
11 3 3 68.5% 68.8% 
12 3 3 65.4% 70.9% 
13 3 3 64.1% 70.1% 
14 3 3 65.0% 70.6% 
15 3 3 67.1% 70.2% 
16 3 3 62.3% 71.1% 
17 3 3 66.1% 69.6% 
18 3 3 66.0% 69.8% 
19 3 3 66.1% 71.2% 
20 3 3 66.6% 68.2% 
21 3 3 65.3% 71.4% 
22 3 3 66.0% 70.1% 
23 3 3 67.1% 69.6% 
24 3 3 68.4% 70.9% 
25 3 3 69.9% 72.1% 
26 3 3 68.9% 71.3% 
27 3 3 68.1% 70.3% 
28 3 3 66.6% 70.7% 
29 3 3 66.2% 66.3% 
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30 3 3 68.1% 70.1% 

Table 6.1 - Accuracy results for combinations of dimension and number of mixtures 

Table 2 shows the results of a classification run with multiple values for the 

dimension and the two different values for the number of mixtures. This classification 

will be able to show which value for the mixtures combined with a value for the 

dimension provides the best results. 

Dimension  Number of 
Mixtures 

Lag Sensitivity Specificity 

1 5 3 60.5% 71.8% 
2 5 3 66.1% 71.9% 
3 5 3 65.9% 71.4% 
4 5 3 66.4% 71.8% 
5 5 3 53.9% 69.9% 
1 25 3 61.2% 71.1% 
2 25 3 66.6% 71.5% 
3 25 3 68.4% 71.9% 
4 25 3 69.9% 71.8% 
5 25 3 70.1% 72.2% 

Table 6.2 - Accuracy results for combinations of dimension and number of mixtures 

 

Table 3 shows the results of an experiment run with multiple values for the lag. 

Again, the experiment uses the structure discussed in chapter 5. 25 mixtures and a 

dimension of five is used based on the results of the previous two series of classifications. 

The results show that a lag of five provides the best results.   
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Dimension  Number of 
Mixtures 

Lag Sensitivity Specificity 

1 25 5 65.7% 71.6% 
2 25 5 65.0% 68.6% 
3 25 5 65.6% 73.3% 
4 25 5 67.9% 70.8% 
5 25 5 70.8% 74.7% 
6 25 5 69.6% 72.5% 
7 25 5 68.3% 72.3% 
8 25 5 66.1% 72.0% 
9 25 5 62.8% 73.9% 
10 25 5 56.7% 72.3% 
11 25 5 59.4% 72.1% 
12 25 5 53.4% 73.3% 
13 25 5 53.0% 71.0% 
14 25 5 51.9% 70.3% 
15 25 5 57.0% 72.1% 
16 25 5 55.5% 72.0% 
17 25 5 52.3% 71.7% 
18 25 5 56.8% 70.9% 
19 25 5 53.7% 70.9% 
20 25 5 54.5% 72.4% 

Table 6.3 - Accuracy results for different lag values 

 
Experimentation has shown that the values that provide the best overall accuracy 

are a lag of 5, dimension of 5, and 25 mixtures in the GMM. The experiments in the 

following sections use these values. It should be noted, however, that the variation 

between consecutive runs of the classification with like parameters is similar to the 

variation among runs with different parameters.  This is indication that the results may 

merely indicate the presence of noise and not conclusive evidence of the optimal 

parameter selections.  It is likely that any selection of parameters from the above tables 

will provide similar accuracy results. 
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6.3 Baselines 

Two baselines will be used to examine the experimental results. The first baseline 

is the Langley et al method [36] described in section 3.2. This algorithm uses threshold 

levels of the ST deviation to classify ECG signals. The results when the algorithm is run 

on the Training Set are 99.0% sensitivity and 88.8% specificity. When the algorithm is 

run on the ‘Test Set,’ the sensitivity stays at 99.0% and the specificity actually increases 

to 93.3%. 

 Sensitivity Specificity Accuracy 
Training Set 99.0% 88.8% 91.1% 

Test Set 99.0% 93.3% 95.6% 

Table 6.4 - Accuracy results for the Langley et al method 

 
The second baseline experiment is a neural network method. This classification 

method follows the approach of [35], but applies the algorithm to the data of the Long-

Term ST database. The algorithm was originally implemented using the European ST 

database. The classifier had a sensitivity of 73.0% and specificity of 69.45%. 

The first step in this neural network algorithm is to extract the needed ST 

segments from the data. The data used is the 40 samples (160ms) of ST deviation 

following the J-point for the beat labeled as the event start. The number of samples is 

reduced to 20 by averaging every two samples to reduce the effects of noise. These 

deviation values are input into a three layer backpropagation neural network with 20 

input neurons. This neural network has one hidden layer with 10 neurons and an output 

layer with two neurons. The output of the neural network gives a value between 0 and 1. 

When the values are rounded (.5 rounds up to 1) the neural network becomes a binary 
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classifier where 1 represents ischemia and 0 represents non-ischemic causes of the ST 

event. 

 Sensitivity Specificity Accuracy 
Test Set 71.3% 68.7% 69.2% 

Table 6.5 - Accuracy results for Neural Network algorithm 

 
The neural network classifier is trained on the Training Set and tested on the Test 

Set of the Long-Term ST database. The resulting sensitivity was 71.3% and the 

specificity was 68.7%. These accuracy results are similar to those that were achieved on 

the European ST database. 

6.4 Data Normalization Experiment 

 The unique nature of an individual’s cardiovascular system leads to ECG 

recordings with varied amplitudes and wave characteristics. Due to this, the data varies 

greatly from patient-to-patient and hour-to-hour for a specific patient. This variation is 

especially prevalent when the ECG waveform is affected by muscle artifact (distortion 

that appears in the ECG signal). In order correct to for these effects, the data must be 

adjusted to have standard statistical parameters.  

 This experiment uses the 400 ms following the ST event (which captures the ST 

segment and T wave) as labeled by the annotation file. The data is extracted from the lead 

labeled by the annotations as indicating the ST event. The mean of the signal is calculated 

and subtracted so that the signal is zero meaned. Next, the standard deviation of the 

signal is found using: 
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where  
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The signal is then divided by the standard deviation to give a unit variance. The complete 

normalization is characterized by: 
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This normalization provides a set of signals with the same first and second order 

statistics. 

Next, the training data is transformed into a reconstructed phase space (see 

section 6.2 for information on the parameter values used). The RPSs are combined into 

classes based on the label assigned to them by the database annotations. All of the RPSs 

labeled as ischemic are concatenated to form one global phase space. The same procedure 

is applied for the non- ischemic phase spaces. Once the class sets are created, they are 

modeled with Gaussian mixture models. This creates two trained statistical classification 

models. 

Signal classification is done by comparing the learned models with the test data to 

be classified. In order to utilize all available data, ten fold cross validation is implemented 

(see section 6.1 for more information). 

Classified As 
 Ischemic Non-Ischemic 
Ischemic 222 109 
Non-Ischemic 460 501 

Table 6.6 – Ten-fold cross validation confusion matrix for normalizing experiment 
on Training Set 
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 Sensitivity Specificity Accuracy 

‘Learning Set’ – Ten Fold Cross Validation 67.1% 47.9% 56.0% 
Non-normalized results 70.8% 74.7% 73.7% 

Table 6.7 – Ten-fold cross validation accuracy results for normalizing experiment 
on Training Set 

 
 The above results show that, for this experiment, normalizing the data actually 

causes a decrease in sensitivity from 70.8% to 67.1% and a decrease in specificity from 

74.7% to 47.9% when compared with the same experiment done without normalizing the 

data (see section 6.2). This result is not entirely unexpected as it is thought that there may 

be dynamics of the signal that are lost during normalization. The experiment confirms 

that there are features of the non-normalized signal that have indications of ischemia. 

When the data is normalized, these features are lost and the classifier is unable to 

distinguish between classes. It is clear that normalization is not a good approach for the 

proposed classification method. 

6.5 Sub-Band Filtering 

 This section describes an experimental approach known as sub-band filtering. In 

this method, the signal is filtered into discrete frequency bands using a set of IIR filters. 

Each band is treated as a separate signal and the class likelihoods are calculated. The 

likelihoods derived from the GMMs are joined together using a summation method called 

fusion. This classification method is currently being used with high levels of success to 

classify other cardiac malfunctions in ECG signals [46]. Two versions of implementing 

this method are described in this section. 
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Selection of filter boundaries is important for this approach to yield high 

accuracies during classification. The goal is to select boundaries that separate the signal 

into sub-bands containing band-independent information. Analyzing the power spectral 

density (PSD) of the ST segments, like the one shown in Figure 6.1, and taking into 

account the results from [46], two sets of boundaries are determined.  

The first set creates three sub-bands with two boundaries at 8.75Hz and 32.0Hz. 

Figure 6.1 shows that the first frequency band captures the large energy of the signals low 

frequency components. The value of 32.0Hz because it has been shown that frequency 

bands above this frequency are due to noise and not the ECG signal. Consequently, the 

band above 32 Hz is dropped, leaving a total of two frequency bands.  

The second frequency boundary set uses three boundaries to create three bands 

after the highest frequency band is dropped. Figure 6.2 shows the boundaries that are 

chosen on the power spectral density plot. The three boundaries are 8.75Hz, 18.75Hz, and 

32.0Hz. The 8.75Hz boundary is again chosen to capture the high energy in a low 

frequency band. The 18.75Hz boundary separates the mid-frequency band into two 

approximately equal bands. This should allow a classifier to better model this portion of 

the signal. The final boundary, at 32.0Hz, again is used to separate the drop the high 

frequency noise. 
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Figure 6.1 - Power spectral density of ECG ST segment in Training Set with 
frequency boundaries of 8.75Hz and 32.0Hz labeled 
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Figure 6.2 - Power spectral density of ECG ST segment in Training Set with 

frequency boundaries of 18.75Hz, 18.75Hz, and 32.0Hz labeled 

 

 Once the signals are separated into frequency bands, GMM models are trained for 

each combination of class and frequency band. The ST events to be classified are 

similarly filtered into frequency bands and then compared with the learned models. The 

Naïve Bayes classifier method is used to classify the events into classes. The results of a 

ten-fold cross validation implementation of this method are shown below.  

Classified As 
 Ischemic Non-Ischemic 
Ischemic 151 180 
Non-Ischemic 570 391 

Table 6.8 – Ten-fold cross validation confusion matrix for 2 boundary sub-band 
experiment on Training Set 
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Classified As 
 Ischemic Non-Ischemic 
Ischemic 175 156 
Non-Ischemic 600 361 

Table 6.9 – Ten-fold cross validation confusion matrix for 3 boundary sub-band 
experiment on Training Set 

 
 Sensitivity Specificity Accuracy 

2 Boundaries 45.6% 40.7% 42.0% 
3 Boundaries 52.9% 37.6% 41.5% 
Non-banded 70.8% 74.7% 73.7% 

Table 6.10 – Ten-fold cross validation accuracy results for sub-band experiments on 
Training Set 

 
The results show that both the sensitivity and specificity are lower than the 

baseline for both filter-boundary choices. The first set of filter bands has a slightly higher 

specificity than the second, while the second set of filter bands has a slightly higher 

sensitivity than the first. These results are somewhat unexpected, as this method has had 

much better accuracy when detecting other arrhythmia events [46]. One hypothesis is that 

ST-T complex is too short to split into effective frequency bands. Other experiments 

using sub-band filtering have used the entire beat, which has several frequency 

components that correspond to different stages of cardiac function.  

6.6 Three Class Experiment 

This experiment confirms the hypothesis that breaking the non- ischemic class into 

two classes will improve classification accuracy. By splitting the classes into more 

precise models, the classifier can better learn the distribution of each specific class. After 

the classification is completed, all of the non- ischemic classes are folded together to get 

the overall results. This means that all events that are classified as any type of non-
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ischemic cause are considered to be correct, even if they are not classified as the correct 

non- ischemic cause. 

The ST events in the Long Term ST database have been classified into four 

classes: ischemic, axis shift, conduction change, and heart rate-related shifts. The 

ischemic class is all events that have been determined to be caused by ischemia. The axis 

shift class represents events that correspond to a non- ischemic ST level shift caused by a 

change of the physical path of conduction with respect to the leads placed on the patient’s 

chest. The conduction change class corresponds to a non- ischemic ST shift caused by a 

change in the cardiac conduction pattern. The non- ischemic heart rate-related class 

corresponds to a change in the ST level due to a change in heart rate. The conduction 

change data is distributed between two records in the ‘Training Set.’ One record contains 

429 conduction change events and a second record contains 12 events. This distribution 

demands a combination of two classes to allow for ten-fold cross validation. Because the 

axis shift and conduction change cla sses both represent ST shifts as opposed to the ST 

episodes of the heart rate-related class, they are treated as one class. 

In order to use all available data, in this experiment, all available leads (signals) 

are used (in previous experiments only the lead identified by the annotations was used). If 

the ST event is visible on the other leads of the data, they will be helpful in making the 

classification. To better model each specific lead, separate models of the three classes are 

created for each lead. This increases the total number of classes from three to nine, since 

there are up to three leads per record. 

To train the classifier, each signal of the training set is embedded into a 

reconstructed phase space. This means that the ST segment for every lead at the labeled 
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event beat is embedded. Then the RPSs for each lead and class combination are overlaid 

to make one global RPS. For example, all segments from lead 1 and the ischemic class 

are combined. Next, one GMM classifier is trained for each global RPS. This creates a 

total of N L× classifiers, where N is the number of classes and L is the maximum number 

of leads for any segment. 

 To validate the classifier, ten-fold cross validation is used. All of the leads of the 

event are converted into their own RPS. The RPS is then compared with the matching 

lead of each class. This returns a log- likelihood that the lead belongs to that class. The 

log- likelihoods are then summed across all of the leads for each class to get an overall 

likelihood that an event belongs to a certain class. The class with the highest likelihood is 

selected as the estimated class. Figure 6.3 gives an overview of this classifier. Table 6.11 

and Table 6.12 provide the results of ten-fold cross validation using this classifier. 
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Figure 6.3 - Flowchart of the three-class classifier 
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Classified As 
 

Ischemic 
Conduction 

Change/Axis Shift 
Heart Rate- 

Related Shift 
Ischemic 261 47 23 

Conduction Change/Axis Shift 120 662 42 

Heart Rate-Related Shift 6 15 116 

Table 6.11 – Ten-fold cross validation confusion matrix for 3 class experiment on 
Training Set 

 

In order to compare these results to other experiments, all of the non- ischemic 

results (conduction change/axis shift and heart rate-related shift) are folded into one non-

ischemic class for the accuracy calculations.  

 Sensitivity Specificity Accuracy 
Training Set – Ten Fold Cross Validation 78.9% 86.9% 84.8% 
Single Class Experiment 70.8% 74.7% 73.7% 

Table 6.12 – Ten-fold cross validation accuracy results for 3 class experiment on 
Training Set 

 
These results show that converting to three classes and using all available leads gave a 

very significant improvement in results over previous experiments. These are the results 

that were expected since more data was being used in modeling and classification and the 

data was grouped more logically. Clearly, the classifier is much better at distinguishing 

the non-ischemic data when it is broken down into two available classes. 

6.7 Multiple Beat Classifications 

In order to take advantage of the ischemic condition’s progression over time, the 

proposed classifier uses the 16 beats surrounding the labeled event. In the Long Term ST 

database, the ST level must drop below 50µV to be labeled as an ST event. By examining 

the eight beats before the event occurs, it may be possible to find indications of ischemia 



Experiments 58 

or other changes when the ST level is beginning to drop. Additionally, to be labeled as an 

event, the ST changes must occur for at least 30 seconds [2]. This means that ST changes 

are still apparent during this time. By modeling and classifying using the eight beats 

following the event, it may be possible to develop a more accurate classification method.  

During the training phase, the ST segment and T Wave (400 ms following labeled 

J-Point) are extracted from the beats before and after the labeled ST event of the training 

set. Each signal in the set is transformed into a reconstructed phase space (every lead for 

every beat) with dimension five and lag five. Each of the RPSs with a matching class, 

lead, and waveform index are overlaid to create global phase spaces. A GMM with 25 

mixtures is then learned for each of the global phase spaces. This creates 

N L M× × classifiers, where N is the number of classes, L is the maximum number of 

leads in any record, and M is the number of beats used. In this study N=3, L=3, M=16, so 

there are 144 total classifiers trained. 
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Figure 6.4 - Flowchart of the complete algorithm for classification 

Figure 6.4 shows a flowchart of the process used to classify an ST event using the 

proposed algorithm. The ST segment for each lead of each of the eight beats before the 

event and the eight beats after the event must be extracted. Each combination of lead and 
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waveform index is then compared with the same lead- index combination for the three 

possible classes. The log- likelihoods for each class are then summed across the lead-

index combinations to get an overall class likelihood. The class with the highest 

likelihood is selected. 

Classified As 
 

Ischemic 
Conduction 

Change/Axis Shift 
Heart Rate- 

Related Shift 
Ischemic 266 48 17 

Conduction Change/Axis Shift 112 693 19 

Heart Rate-Related Shift 3 15 119 

Table 6.13 – Ten-fold cross validation confusion matrix for multiple beat 
experiment on Training Set 

 
Classified As 

 
Ischemic 

Conduction 
Change/Axis Shift 

Heart Rate- 
Related Shift 

Ischemic 604 70 49 

Conduction Change/Axis Shift 244 813 102 

Heart Rate-Related Shift 6 6 80 

Table 6.14 – Confusion matrix for 16 beat experiment on Test Set 

 
Beats Before/Beats After Sensitivity Specificity Accuracy 

2 77.9% 79.3% 78.9% 
4 79.2% 81.2% 80.7% 
6 79.7% 85.4% 83.9% 
8 80.4% 88.0% 86.1% 

Table 6.15 – Accuracy results for Training Set 

Beats Before/Beats After Sensitivity Specificity Accuracy 
2 77.0% 78.8% 78.2% 
4 80.0% 80.0% 80.0% 
6 80.9% 80.1% 80.4% 
8 84.6% 85.5% 85.3% 

Figure 6.5 - Accuracy results for Test Set 
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 These results show significant improvement from the previous methods. The 

training data overall accuracy improved by 1.3% over the three class experiment. The 

method’s accuracy was 12.1% better than the neural network baseline method, but was 

still 14.3% lower than the Langley et al method. The ability of the method to generalize 

to unseen data is evident from the high accuracy level in both ten-fold cross validation 

and classification on a never-before-seen test data set. 

6.8 Results Comparison 

Table 6.16 shows a summary of all of the experimental results for this thesis. It 

also shows the two baseline classification accuracies for comparison.  

Experiment Sensitivity Specificity Accuracy 
Baseline 1: Langley Classifier1 99.0% 88.8% 91.1% 
Baseline 1: Langley Classifier2 99.0% 93.3% 95.6% 
Baseline 2: Neural Network1 71.3% 68.7% 69.2% 
Simple Experiment from Parameter 
Determination1 

70.8% 74.7% 73.7% 

Normalizing Data 2 Bands1 67.1% 47.9% 56.0% 
Filter Banks 2 Bands1 45.6% 40.7% 42.0% 
Filter Banks 3 Bands1 52.9% 37.6% 41.5% 
Three Classes1 78.9% 86.9% 84.8% 
Multiple Beats1 80.4% 88.0% 86.1% 
Multiple Beats2 84.6% 85.5% 85.3% 

Table 6.16 - Summary of experimental results and baseline accuracies 

The best classification results come from the final experiment, which uses three 

classes and eight beats on either side of the labeled event. This experiment has similar 

accuracies for both the ‘Learning Set’ ten-fold cross validation and the ‘Test Set.’ It is 

expected that these accuracies would be the same because both sets are classified using 

                                                 
1 Ten-fold cross validation on ‘Learning Set’ 
2 Test Set 
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an independently trained classifier. While the experiment was able to classify more 

accurately than the Neural Network classifier, it was not able to exceed the overall 

accuracy of the Langley classifier. The proposed method was able to match the 

specificity of the Langley method when operating on the ‘Training Set.’ The sensitivity, 

however, is considerably lower for both the Training Set and the ‘Test Set.’ 

There are several possibilities for the cause of the difference in classification 

accuracy from the Langley method. First, it is possible that the durations of ST deviation 

levels are more important than the shape and trajectory of the ST segment itself. This 

would explain why a method based on thresholds of ST deviation leve l would have a 

much higher accuracy. This is the most damaging hypothesis to the proposed algorithm, 

since it does not rely on time durations at all. A second hypothesis is that different RPS 

parameters and numbers of surrounding beats should be used. The parameters should be 

empirically found using the final classification method developed. It may be possible to 

find a combination which yields better classification accuracies. 

The greatest contribution to classification accuracy comes from splitting the non-

ischemic class into two sub-classes. Splitting the classes improves overall accuracy by 

11.1%. Even if the proposed algorithm is not used in the future, the use of sub-classes 

could be applied to other classification approaches. There appears to be distinct 

differences between classes that a generalized classifier is not able to recognize. 

It is interesting to note that the multiple beat classifier has a higher specificity 

than sensitivity. This is contrary to the operation of most other classification methods. 

This means that the algorithm would have more missed alarms than false alarms. On its 

own, this would not be an appropriate method for clinical use, since patients would not be 
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notified of important health conditions. It may be possible, however, to combine this 

method with a high sensitivity, low specificity method to achieve a balanced overall 

accuracy. 
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7 Conclusion 

A novel method for the classification of myocardial ischemia has been presented 

in this thesis. Several experiments, which analyze the effectiveness of the proposed 

method, have been presented and discussed. The method presented captures dynamical 

data present in the ST segment of the ECG waveform by embedding the signal in a 

reconstructed phase space. This approach is different from other approaches, which have 

been presented in the past. Because the approach is unique, it lends itself well to the 

possibility of combination with other methods. It may be possible to increase 

classification accuracy by finding a classifier that has a mutua lly exclusive set of errors 

from the proposed algorithm. 

A second strategic part of this algorithm is how it takes advantage of an ST 

event’s progression over time by using the ST segments surrounding the event start time. 

Since ischemia is a condition tha t generally develops over time, it may be possible to 

recognize the signs of a developing cardiac condition. This is especially helpful in 

distinguishing ischemia from sudden axis shifts and conduction changes. This could 

likely be a contributing factor as to why the specificity of the algorithm is higher than the 

sensitivity. 

Finally, the algorithm also increases accuracy by breaking the non- ischemic class 

into two sub-classes. This procedure introduced an 11.1% increase in accuracy over the 

simple experiment run during parameter determination. It is a very significant increase 

for this type of experiment. Clearly, the classifier is more much more accurate when it is 

able to model the heart rate-related events separately from the axis shifts and conduction 

changes. 
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While the algorithm was not able to get a higher accuracy than the best baseline 

method (Langley et al method), it was able to achieve significantly higher accuracy than 

the Neural Network. The accuracy results of this classification approach are promising, 

but this method is not yet ready for clinical use. In order to be accepted for use, more 

research must be done to improve sensitivity and specificity. 

7.1 Future Work 

While this classification algorithm does not have accuracies that exceed current 

methods, it is important to note that it has been under development for a relatively short 

time. There are many possibilities for future research that may be able to generate an 

increase in classification accuracy. The future areas generally fall into two categories: 

development of new feature sets and combination with other classification methods. 

The classification algorithm described herein used the ST segment based on its 

popularity and the accepted idea of injury current. It may be possible, however, to find 

other features that may help to improve the classification accuracy. For example, it may 

be possible to use other portions of the ECG waveform besides only the ST segment and 

T wave. On a related note, it may be helpful to generate separate models for both the ST 

segment and T wave so that a classifier can search for details in how each wave is 

affected by ischemia. In addition, since it is known that one of the non- ischemic classes 

corresponds to a change in the heart rate, it is likely that incorporation of the patient’s 

heart rate changes would be a helpful feature. 

Another possible classification improvement might come from examining 

different combinations of the beats surrounding the event label. Currently, a symmetric 

number of beats (same number before and after the event) are used. Based on research 
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regarding the length of ischemia development and the average duration, it might be 

valuable to adjust the beat distribution. It may also be helpful to examine beats further 

into the future, since ischemia labeled in the Long-Term ST database must be at least 30 

seconds (approximately 40 beats) in duration (based on a heart rate of 80 BPM). 

The second category for future research work is in combining this classification 

method with other methods to increase classification accuracies. An especially promising 

algorithm for combination is the Langley method described in this thesis. This method 

uses characteristics of the ST deviation to classify. Because the algorithm proposed in 

this thesis uses the dynamical information of the ST segment and T wave, the errors from 

both methods may not be the same. Since the Langley classifier has such a high level of 

sensitivity and a lower specificity, it erroneously classifies non- ischemic beats as 

ischemia. The most probable way to implement this combination is to reclassify the 

events that the Langley classifier calls ischemic. Additionally, since the Langley 

classifier labels all heart rate-related shifts as ischemia, use of the heart rate’s deviation 

may be beneficial. 
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