
Page 1

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng

Chapter 8, Object Design:
Reuse and Patterns I

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Object Design

♦ Object design is the process of adding details to the
requirements analysis and making implementation decisions

♦ The object designer must choose among different ways to
implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.

♦ Requirements Analysis: Use cases, functional and dynamic
model deliver operations for object model

♦ Object Design: Iterates on the models, in particular the object
model and refine the models

♦ Object Design serves as the basis of implementation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 3

Object Design: Closing the Gap

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requir ements gap

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 4

Examples of Object Design Activities

♦ Identification of existing components
♦ Full definition of associations
♦ Full definition of classes

System Design => Service
Object Design => API

♦ Specifying the contract for each component
♦ Choosing algorithms and data structures
♦ Identifying possibilities of reuse
♦ Detection of solution-domain classes
♦ Optimization
♦ Increase of inheritance
♦ Decision on control
♦ Packaging

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 5

A More Detailed View of Object Design Activities

Specifying constraints

Specifying types &
signatures

Identifying patterns

Adjusting patterns

Identifying missing
attributes & operations

Specifying visibility

Specification

Specifying exceptions

Reuse

Identifying components

Adjusting components

Select Subsystem

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

Detailed View of Object Design Activities (ctd)

Collapsing classes

Restructuring Optimization

Revisiting
inheritance

Optimizing access
paths

Caching complex
computations

Delaying complex
computations

Check Use Cases

Realizing associations

Page 2

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 7

A Little Bit of Terminology: Activities
♦ Object-Oriented methodologies use these terms:

System Design Activity
Decomposition into subsystems

Object Design Activity
Implementation language chosen
Data structures and algorithms chosen

♦ Structured analysis/structured design uses these terms:
Preliminary Design Activity

Decomposition into subsystems
Data structures are chosen

Detailed Design Activity
Algorithms are chosen
Data structures are refined
Implementation language is chosen
Typically in parallel with preliminary design, not a separate activity

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

Outline of the Lecture
♦ Design Patterns

Usefulness of design patterns
Design Pattern Categories

♦ Patterns covered in this lecture
Composite: Model dynamic aggregates
Facade: Interfacing to subsystems
Adapter: Interfacing to existing systems (legacy systems)
Bridge: Interfacing to existing and future systems

♦ More patterns:
Abstract Factory: Provide manufacturer independence
Builder: Hide a complex creation process
Proxy: Provide Location transparency
Command: Encapsulate control flow
Observer: Provide publisher/subscribe mechanism
Strategy: Support family of algorithms, separate of policy and mechanism

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

The use of inheritance

♦ Inheritance is used to achieve two different goals
Description of Taxonomies
Interface Specification

♦ Identification of taxonomies
Used during requirements analysis.
Activity: identify application domain objects that are
hierarchically related
Goal: make the analysis model more understandable

♦ Service specification
Used during object design
Activity:
Goal: increase reusability, enhance modifiability and extensibility

♦ Inheritance is found either by specialization or generalization

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

Metamodel for Inheritance

♦ Inheritance is used during analysis and object design

Inheritance

Specification
Inheritance

Implementation
Inheritance

Inheritance
for ReuseTaxonomy

Inheritance detected
by generalization

Inheritance detected
by specialization

Analysis
activity

Object
Design

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

Taxonomy Example

Mammal

Tiger Wolf Wale

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Problem with implementation inheritance:
Some of the inherited operations might exhibit unwanted behavior.

What happens if the Stack user calls Remove() instead of Pop()?

Example: I have a List
class, I need a Stack
class. How about
subclassing the Stack
class from the List class
and providing three
methods, Push() and
Pop(), Top()?

Add ()
Remove()

List

Push ()
Pop()

Stack

Top()

“Already
implemented”

Implementation Inheritance

♦ A very similar class is already implemented that does almost
the same as the desired class implementation.

Page 3

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Implementation Inheritance vs Interface Inheritance

♦ Implementation inheritance
Also called class inheritance
Goal: Extend an applications’ functionality by reusing functionality
in parent class
Inherit from an existing class with some or all operations already
implemented

♦ Interface inheritance
Also called subtyping
Inherit from an abstract class with all operations specified, but not
yet implemented

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Client Receiver DelegateDelegates to calls

Delegation as alternative to Implementation
Inheritance

♦ Delegation is a way of making composition (for example
aggregation) as powerful for reuse as inheritance

♦ In Delegation two objects are involved in handling a request
A receiving object delegates operations to its delegate.
The developer can make sure that the receiving object does not
allow the client to misuse the delegate object

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Duck: Delegation vs. Inheritance
♦ Description: Decide whether to use delegation or

inheritance for designing the following classes. Specify the
attributes and methods for each class. Draw the UML
diagram for the whole thing.

Array
Queue
Stack
Tree
Linked list

♦ Process:
Work in pairs
You have about 10 minutes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Delegation instead of Implementation Inheritance

♦ Inheritance: Extending a Base class by a new operation or
overwriting an operation.

♦ Delegation: Catching an operation and sending it to another
object.

♦ Which of the following models is better for implementing a
stack?

+Add()
+Remove()

List

Stack

+Push()
+Pop()
+Top()

+Push()
+Pop()
+Top()

Stack

Add()
Remove()

List

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Comparison: Delegation vs Implementation Inheritance

♦ Delegation
Pro:

Flexibility: Any object can be replaced at run time by another one (as
long as it has the same type)

Con:
Inefficiency: Objects are encapsulated.

♦ Inheritance
Pro:

Straightforward to use
Supported by many programming languages
Easy to implement new functionality

Con:
Inheritance exposes a subclass to the details of its parent class
Any change in the parent class implementation forces the subclass to
change (which requires recompilation of both)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

Component Selection

♦ Select existing
off-the-shelf class libraries
frameworks or

components

♦ Adjust the class libraries, framework or components
Change the API if you have the source code.
Use the adapter or bridge pattern if you don’t have access

♦ Architecture Driven Design

Page 4

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 19

Reuse...

Look for existing classes in class libraries
JSAPI, JTAPI,

Select data structures appropriate to the algorithms
Container classes
Arrays, lists, queues, stacks, sets, trees, ...

It might be necessary to define new internal classes and
operations

Complex operations defined in terms of lower-level operations
might need new classes and operations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 20

Frameworks

♦ A framework is a reusable partial application that can be
specialized to produce custom applications.

♦ Frameworks are targeted to particular technologies, such as
data processing or cellular communications, or to application
domains, such as user interfaces or real-time avionics.

♦ The key benefits of frameworks are reusability and
extensibility.

Reusability leverages of the application domain knowledge and
prior effort of experienced developers
Extensibility is provided by hook methods, which are overwritten
by the application to extend the framework.

Hook methods systematically decouple the interfaces and behaviors of
an application domain from the variations required by an application
in a particular context.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 21

Classification of Frameworks

♦ Frameworks can be classified by their position in the software
development process.

♦ Frameworks can also be classified by the techniques used to
extend them.

Whitebox frameworks
Blackbox frameworks

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 22

Frameworks in the Development Process

♦ Infrastructure frameworks aim to simplify the software
development process

System infrastructure frameworks are used internally within a
software project and are usually not delivered to a client.

♦ Middleware frameworks are used to integrate existing
distributed applications and components.

Examples: MFC, DCOM, Java RMI, WebObjects, WebSphere,
WebLogic Enterprise Application [BEA].

♦ Enterprise application frameworks are application specific and
focus on domains

Example domains: telecommunications, avionics, environmental
modeling, manufacturing, financial engineering, enterprise business
activities.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

White-box and Black-Box Frameworks

♦ Whitebox frameworks:
Extensibility achieved through inheritance and dynamic binding.
Existing functionality is extended by subclassing framework base
classes and overriding predefined hook methods
Often design patterns such as the template method pattern are used
to override the hook methods.

♦ Blackbox frameworks
Extensibility achieved by defining interfaces for components that
can be plugged into the framework.
Existing functionality is reused by defining components that
conform to a particular interface
These components are integrated with the framework via
delegation.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Class libraries and Frameworks
♦ Class Libraries:

Less domain specific
Provide a smaller scope of reuse.
Class libraries are passive; no constraint on control flow.

♦ Framework:
Classes cooperate for a family of related applications.
Frameworks are active; affect the flow of control.

♦ In practice, developers often use both:
Frameworks often use class libraries internally to simplify the
development of the framework.
Framework event handlers use class libraries to perform basic tasks
(e.g. string processing, file management, numerical analysis….)

Page 5

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

Components and Frameworks

♦ Components
Self-contained instances of classes

Plugged together to form complete applications.
Blackbox that defines a cohesive set of operations,
Can be used based on the syntax and semantics of the interface.
Components can even be reused on the binary code level.

The advantage is that applications do not always have to be recompiled
when components change.

♦ Frameworks:
Often used to develop components
Components are often plugged into blackbox frameworks.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

Example: Framework for Building Web Applications

WebBrowser

RelationalDatabase

StaticHTML

WOAdaptor
WebServer

WoRequest Template

WebObjectsApplication

WORequest

EOF

WebObjects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Finding Objects

♦ The hardest problems in object-oriented system development
are:

Identifying objects
Decomposing the system into objects

♦ Requirements Analysis focuses on application domain:
Object identification

♦ System Design addresses both, application and implementation
domain:

Subsystem Identification

♦ Object Design focuses on implementation domain:
Additional solution objects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Techniques for Finding Objects

♦ Requirements Analysis
Start with Use Cases. Identify participating objects
Textual analysis of flow of events (find nouns, verbs, ...)
Extract application domain objects by interviewing client
(application domain knowledge)
Find objects by using general knowledge

♦ System Design
Subsystem decomposition
Try to identify layers and partitions

♦ Object Design
Find additional objects by applying implementation domain
knowledge

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

Another Source for Finding Objects : Design Patterns

♦ What are Design Patterns?
A design pattern describes a problem which occurs over and
over again in our environment
Then it describes the core of the solution to that problem, in
such a way that you can use this solution a million times over,
without ever doing it the same twice

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Introducing the Composite Pattern

♦ Models tree structures that represent part-whole hierarchies with
arbitrary depth and width.

♦ The Composite Pattern lets client treat individual objects and
compositions of these objects uniformly

Client Component

Leaf

Operation()

Composite

Operation()
AddComponent

RemoveComponent()
GetChild()

Children

Page 6

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Modeling a Software System with a Composite Pattern

Software
System

Class
Subsystem Children

*
User

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

The Composite Patterns models dynamic aggregates

University School Department

Organization Chart (variable aggregate):

Dynamic tree (recursive aggregate):

CarFixed Structure:

Doors Wheels Battery Engine

Compound
Statement

Simple
Statement

Program

Block

* *

* *

* *
Dynamic tree (recursive aggregate):

Composite
Pattern

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Graphic Applications also use Composite Patterns

Client Graphic

Circle

Draw()

Picture

Draw()
Add(Graphic g)

RemoveGraphic)
GetChild(int)

Children
Line

Draw()

• The Graphic Class represents
both primitives (Line, Circle)
and their containers (Picture)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

Design Patterns reduce the Complexity of Models

♦ To communicate a complex model we use navigation and reduction of
complexity

We do not simply use a picture from the CASE tool and dump it in front of
the user
The key is navigate through the model so the user can follow it.

♦ We start with a very simple model and then decorate it incrementally
Start with key abstractions (use animation)
Then decorate the model with the additional classes

♦ To reduce the complexity of the model even further, we
Apply the use of inheritance (for taxonomies, and for design patterns)

If the model is still too complex, we show the subclasses on a separate slide
Then identify (or introduced) patterns in the model

We make sure to use the name of the patterns

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Duck: Studying your object design
♦ Description:

Review your current object design.
Identify any objects that are missing.
Does the composite pattern fit any part of your design?
Review all the attributes and methods, including their types
and visibility, of your objects. Fill in the missing attributes and
methods.

♦ Process:
Work in teams
You have about 10 minutes.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

♦ Delegation is used to
bind an Adapter and an Adaptee

♦ Interface inheritance is use to specify the interface of the Adapter class.
♦ Target and Adaptee (usually called legacy system) pre-exist the Adapter.
♦ Target may be realized as an interface in Java.

Adapter pattern

Client
ClientInterface

Request()

LegacyClass

ExistingRequest()

Adapter

Request()

adaptee

Page 7

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

Adapter Pattern

♦ “Convert the interface of a class into another interface clients
expect.”

♦ The adapter pattern lets classes work together that couldn’t
otherwise because of incompatible interfaces

♦ Used to provide a new interface to existing legacy components
(Interface engineering, reengineering).

♦ Also known as a wrapper
♦ Two adapter patterns:

Class adapter:
Uses multiple inheritance to adapt one interface to another

Object adapter:
Uses single inheritance and delegation

♦ Object adapters are much more frequent. We will only cover
object adapters (and call them therefore simply adapters)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

Bridge Pattern

♦ Use a bridge to “decouple an abstraction from its
implementation so that the two can vary independently”. (From
[Gamma et al 1995])

♦ Also know as a Handle/Body pattern.

♦ Allows different implementations of an interface to be decided
upon dynamically.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Using a Bridge

♦ The bridge pattern is used to provide multiple implementations
under the same interface.

♦ Examples: Interface to a component that is incomplete, not yet
known or unavailable during testing

♦ JAMES Project: if seat data is required to be read, but the seat
is not yet implemented, known, or only available by a
simulation, provide a bridge:

VIP
Seat

(in Vehicle Subsystem) SeatImplementation

Stub Code SARTSeatAIMSeat

imp

GetPosition()
SetPosition()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

Bridge Pattern

Abstra ct ion

Ope ra tion()

imp

Client

Imp ->OperationImp();

Concrete Implemen tor B

Ope ra tionImp l()

Refined Abstraction 2

Ope ra tion()

Refined Abstraction 1

Ope ra tion()

Concrete Implementor A

Ope ra tionImp l()

Impl ementor

OperationImpl()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

Adapter vs Bridge

♦ Similarities:
Both are used to hide the details of the underlying implementation.

♦ Difference:
The adapter pattern is geared towards making unrelated
components work together

Applied to systems after they’re designed (reengineering, interface
engineering).

A bridge, on the other hand, is used up-front in a design to let
abstractions and implementations vary independently.

Green field engineering of an “extensible system”
New “beasts” can be added to the “object zoo”, even if these are not
known at analysis or system design time.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

Facade Pattern

♦ Provides a unified interface to a set of objects in a subsystem.
♦ A facade defines a higher-level interface that makes the

subsystem easier to use (i.e. it abstracts out the gory details)
♦ Facades allow us to provide a closed architecture

Page 8

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 43

Design Example

♦ Subsystem 1 can look into the
Subsystem 2 (vehicle subsystem)
and call on any component or class
operation at will.

♦ This is “Ravioli Design”
♦ Why is this good?

Efficiency
♦ Why is this bad?

Can’t expect the caller to
understand how the subsystem
works or the complex
relationships within the
subsystem.
We can be assured that the
subsystem will be misused,
leading to non-portable code

Subsystem 2

Subsystem 1

AIM

Card

SA/RT

Seat

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 44

Subsystem Design with Façade, Adapter, Bridge

♦ The ideal structure of a subsystem consists of
an interface object
a set of application domain objects (entity objects) modeling real
entities or existing systems

Some of the application domain objects are interfaces to existing
systems

one or more control objects

♦ We can use design patterns to realize this subsystem structure
♦ Realization of the Interface Object: Facade

Provides the interface to the subsystem
♦ Interface to existing systems: Adapter or Bridge

Provides the interface to existing system (legacy system)
The existing system is not necessarily object-oriented!

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 45

Realizing an Opaque Architecture with a Facade

♦ The subsystem decides
exactly how it is accessed.

♦ No need to worry about
misuse by callers

♦ If a façade is used the
subsystem can be used in an
early integration test

We need to write only a
driver

VIP Subsystem

AIM

Card

SA/RT

Seat

Vehicle Subsystem API

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Design Patterns encourage reusable Designs
♦ A facade pattern should be used by all subsystems in a software system. The

façade defines all the services of the subsystem.
The facade will delegate requests to the appropriate components within the
subsystem. Most of the time the façade does not need to be changed, when
the component is changed,

♦ Adapters should be used to interface to existing components.
For example, a smart card software system should provide an adapter for a
particular smart card reader and other hardware that it controls and
queries.

♦ Bridges should be used to interface to a set of objects
where the full set is not completely known at analysis or design time.
when the subsystem must be extended later after the system has been
deployed and client programs are in the field(dynamic extension).

♦ Model/View/Controller should be used
when the interface changes much more rapidly than the application
domain.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 47

Review: Design pattern

A design pattern is…

…a template solution to a recurring design problem
Look before re-inventing the wheel just one more time

…reusable design knowledge
Higher level than classes or datastructures (link lists,binary trees...)
Lower level than application frameworks

…an example of modifiable design
Learning to design starts by studying other designs

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 48

Why are modifiable designs important?

A modifiable design enables…

…an iterative and incremental development cycle
concurrent development
risk management
flexibility to change

…to minimize the introduction of new problems when fixing old
ones

…to deliver more functionality after initial delivery

Page 9

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 49

What makes a design modifiable?

♦ Low coupling and high cohesion
♦ Clear dependencies
♦ Explicit assumptions

How do design patterns help?

♦ They are generalized from existing systems
♦ They provide a shared vocabulary to designers
♦ They provide examples of modifiable designs

Abstract classes
Delegation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 50

On to More Patterns!

♦ Structural pattern
Proxy

♦ Creational Patterns
Abstract Factory
Builder

♦ Behavioral pattern
Command
Observer
Strategy

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 51

Proxy Pattern: Motivation

♦ It is 15:00pm. I am sitting at my 14.4 baud modem connection
and retrieve a fancy web site from the US, This is prime web
time all over the US. So I am getting 10 bits/sec.

♦ What can I do?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 52

Proxy Pattern

♦ What is expensive?
Object Creation
Object Initialization

♦ Defer object creation and object initialization to the time you
need the object

♦ Proxy pattern:
Reduces the cost of accessing objects
Uses another object (“the proxy”) that acts as a stand-in for the real
object
The proxy creates the real object only if the user asks for it

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 53

Proxy pattern

♦ Interface inheritance is used to specify the interface shared by
Proxy and RealSubject.

♦ Delegation is used to catch and forward any accesses to the
RealSubject (if desired)

♦ Proxy patterns can be used for lazy evaluation and for remote
invocation.

♦ Proxy patterns can be implemented with a Java interface.

Subject

Request()

RealSubject

Request()

Proxy

Request()

realSubject

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 54

Proxy Applicability

♦ Remote Proxy
Local representative for an object in a different address space
Caching of information: Good if information does not change too
often

♦ Virtual Proxy
Object is too expensive to create or too expensive to download
Proxy is a stand-in

♦ Protection Proxy
Proxy provides access control to the real object
Useful when different objects should have different access and
viewing rights for the same document.
Example: Grade information for a student shared by
administrators, teachers and students.

Page 10

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 55

Virtual Proxy example

♦ Images are stored and loaded separately from text
♦ If a RealImage is not loaded a ProxyImage displays a grey

rectangle in place of the image
♦ The client cannot tell that it is dealing with a ProxyImage

instead of a RealImage
♦ A proxy pattern can be easily combined with a Bridge

Image
boundingBox()

draw()

realSubject RealImage
boundingBox()

draw()

ProxyImage
boundingBox()

draw()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 56

Before

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 57

Controlling Access

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 58

After

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 59

Towards a Pattern Taxonomy
♦ Structural Patterns

Adapters, Bridges, Facades, and Proxies are variations on a single theme:
They reduce the coupling between two or more classes
They introduce an abstract class to enable future extensions
They encapsulate complex structures

♦ Behavioral Patterns
Here we are concerned with algorithms and the assignment of
responsibilies between objects: Who does what?
Behavioral patterns allow us to characterize complex control flows that are
difficult to follow at runtime.

♦ Creational Patterns
Here our goal is to provide a simple abstraction for a complex instantiation
process.
We want to make the system independent from the way its objects are
created, composed and represented.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 60

A Pattern Taxonomy

Pattern

Structural
Pattern Behavioral

Pattern

Creational
Pattern

Adapter Bridge Facade Proxy

Command Observer Strategy

Abstract
Factory

Builder
PatternCommand

Page 11

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 61

Command Pattern: Motivation

♦ You want to build a user interface
♦ You want to provide menus
♦ You want to make the user interface reusable across many

applications
You cannot hardcode the meanings of the menus for the various
applications
The applications only know what has to be done when a menu is
selected.

♦ Such a menu can easily be implemented with the Command
Pattern

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 62

Command pattern

♦ Client creates a ConcreteCommand and binds it with a
Receiver.

♦ Client hands the ConcreteCommand over to the Invoker
which stores it.

♦ The Invoker has the responsibility to do the command
(“execute” or “undo”).

Command

execute()

Receiver

action()

Client

Invoker

ConcreteCommand

execute()

binds

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 63

Command pattern Applicability

♦ “Encapsulate a request as an object, thereby letting you
parameterize clients with different requests,
queue or log requests, and
support undoable operations.”

♦ Uses:
Undo queues
Database transaction buffering

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 64

Observer pattern

♦ “Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.”

♦ Also called “Publish and Subscribe”

♦ Uses:
Maintaining consistency across redundant state
Optimizing batch changes to maintain consistency

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 65

Observer pattern (continued)

9DesignPatterns2.ppt

Observers Subject

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 66

Observer pattern (cont’d)

Observer
update()

Subject
attach(observer)
detach(observer)

notify()

ConcreteSubject
getState()

setState(newState)
subjectState

ConcreteObserver
update()

observerState

observers

subject

*

♦ The Subject represents the actual state, the Observers
represent different views of the state.

♦ Observer can be implemented as a Java interface.
♦ Subject is a super class (needs to store the observers vector)

not an interface.

Page 12

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 67

Sequence diagram for scenario:
Change filename to “foo”

getState()

update()

update()

aListViewanInfoViewaFile

setState(“foo”)

notify()

Attach() Attach()

“foo”

Subject goes through all its
observers and calls update() on

them, asking for the new
state is decoupled from

the notification

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 68

Animated Sequence diagram

getState()

aListViewanInfoViewaFile

notify()

Attach() Attach()

“foo”

setState(“foo”)

update()
update()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 69

A Pattern Taxonomy
Pattern

Structural
Pattern Behavioral

Pattern

Creational
Pattern

Adapter Bridge Facade Proxy

Command Observer Strategy

Abstract
Factory

Builder
PatternCommand Strategy

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 70

Strategy Pattern

♦ Many different algorithms exists for the same task
♦ Examples:

Breaking a stream of text into lines
Parsing a set of tokens into an abstract syntax tree
Sorting a list of customers

♦ The different algorithms will be appropriate at different times
Rapid prototyping vs delivery of final product

♦ We don’t want to support all the algorithms if we don’t need
them

♦ If we need a new algorithm, we want to add it easily without
disturbing the application using the algorithm

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 71

Strategy Pattern

Strategy
AlgorithmInterface

Context

ContextInterface()

ConcreteStrategyC

AlgorithmInterface()

*

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy

Policy decides which Strategy is best given the current Context

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 72

Applying a Strategy Pattern in a Database Application

Strategy
Sort()

Database

Search()
Sort()

Strategy *

BubbleSort

Sort()

QuickSort

Sort()

MergeSort

Sort()

Page 13

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 73

Applicability of Strategy Pattern

♦ Many related classes differ only in their behavior. Strategy
allows to configure a single class with one of many behaviors

♦ Different variants of an algorithm are needed that trade-off
space against time. All these variants can be implemented as a
class hierarchy of algorithms

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 74

A Pattern Taxonomy
Pattern

Structural
Pattern Behavioral

Pattern

Creational
Pattern

Adapter Bridge Facade Proxy

Command Observer Strategy

Abstract
Factory

Builder
PatternCommand Strategy

Abstract
Factory

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 75

Abstract Factory Motivation

♦ 2 Examples
♦ Consider a user interface toolkit that supports multiple looks

and feel standards such as Motif, Windows 95 or the finder in
MacOS.

How can you write a single user interface and make it portable
across the different look and feel standards for these window
managers?

♦ Consider a facility management system for an intelligent house
that supports different control systems such as Siemens’
Instabus, Johnson & Control Metasys or Zumtobe’s proprietary
standard.

How can you write a single control system that is independent from
the manufacturer?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 76

Abstract Factory

AbstractFactory

CreateProductA
CreateProductB

CreateProductA
CreateProductB

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

ConcreteFactory
1

CreateProductA
CreateProductB

ConcreteFactory
2

Client

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 77

Applicability for Abstract Factory Pattern

♦ Independence from Initialization or Representation:
The system should be independent of how its products are created,
composed or represented

♦ Manufacturer Independence:
A system should be configured with one family of products, where one has
a choice from many different families.
You want to provide a class library for a customer (“facility management
library”), but you don’t want to reveal what particular product you are
using.

♦ Constraints on related products
A family of related products is designed to be used together and you need
to enforce this constraint

♦ Cope with upcoming change:
You use one particular product family, but you expect that the underlying
technology is changing very soon, and new products will appear on the
market.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 78

Example: A Facility Management System for the Intelligent
Workplace

IntelligentWorkplace

InitLightSystem
InitBlindSystem
InitACSystem

InitLightSystem
InitBlindSystem
InitACSystem

LightBulb

InstabusLight
Controller

ZumbobelLight
Controller

Blinds

InstabusBlind
Controller

ZumtobelBlind
Controller

SiemensFactory

InitLightSystem
InitBlindsystem
InitACSystem

ZumtobelFactor
y

Facility
Mgt

System

Page 14

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 79

Builder Pattern Motivation

♦ Conversion of documents
♦ Software companies make their money by introducing new

formats, forcing users to upgrades
But you don’t want to upgrade your software every time there is an
update of the format for Word documents

♦ Idea: A reader for RTF format
Convert RTF to many text formats (EMACS, Framemaker 4.0,
Framemaker 5.0, Framemaker 5.5, HTML, SGML, WordPerfect
3.5, WordPerfect 7.0, ….)

Problem: The number of conversions is open-ended.

♦ Solution
Configure the RTF Reader with a “builder” object that specializes
in conversions to any known format and can easily be extended to
deal with any new format appearing on the market

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 80

Builder Pattern

Construct()
Director

For all objects in Structure {
Builder->BuildPart()

}

BuildPart()
Builder

BuildPart()
GetResult()

ConcreteBuilderB Represen-
tation B

BuildPart()
GetResult()

ConcreteBuilder
A

Represen-
tation A

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 81

Example

Parse()
RTFReade
r

While (t = GetNextToken()) {
Switch t.Type {
CHAR: builder->ConvertCharacter(t.Char)
FONT: builder->ConvertFont(t.Font)
PARA: builder->ConvertParagraph
}

}

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

TextConverter

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

AsciiConverter

AsciiText

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

TexConverter

TeXText

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

HTMLConverter

HTMLText

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 82

When do you use the Builder Pattern?

♦ The creation of a complex product must be independent of the
particular parts that make up the product

In particular, the creation process should not know about the
assembly process (how the parts are put together to make up the
product)

♦ The creation process must allow different representations for
the object that is constructed. Examples:

A house with one floor, 3 rooms, 2 hallways, 1 garage and three
doors.
A skyscraper with 50 floors, 15 offices and 5 hallways on each floor.
The office layout varies for each floor.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 83

Comparison: Abstract Factory vs Builder

♦ Abstract Factory
Focuses on product family

The products can be simple (“light bulb”) or complex (“engine”)
Does not hide the creation process

The product is immediately returned

♦ Builder
The underlying product needs to be constructed as part of the
system, but the creation is very complex
The construction of the complex product changes from time to time
The builder patterns hides the creation process from the user:

The product is returned after creation as a final step

♦ Abstract Factory and Builder work well together for a family of
multiple complex products

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 84

Summary I

♦ Object design closes the gap between the requirements and
the machine.

♦ Object design is the process of adding details to the
requirements analysis and making implementation decisions

♦ Object design activities include:
Identification of Reuse
Identification of Inheritance and Delegation opportunities
Component selection

♦ Object design is documented in the Object Design Document,
which can be automatically generated from a specification
using tools such as JavaDoc.

Page 15

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 85

Summary II

♦ Design patterns are partial solutions to common problems such
as

such as separating an interface from a number of alternate
implementations
wrapping around a set of legacy classes
protecting a caller from changes associated with specific platforms.

♦ A design pattern is composed of a small number of classes
use delegation and inheritance
provide a robust and modifiable solution.

♦ These classes can be adapted and refined for the specific
system under construction.

Customization of the system
Reuse of existing solutions

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 86

Summary III

♦ Composite Pattern:
Models trees with dynamic width and dynamic depth

♦ Facade Pattern:
Interface to a subsystem
closed vs open architecture

♦ Adapter Pattern:
Interface to reality

♦ Bridge Pattern:
Interface to reality and prepare for future

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 87

Summary IV
♦ Structural Patterns

Focus: How objects are composed to form larger structures
Problems solved:

Realize new functionality from old functionality,
Provide flexibility and extensibility

♦ Behavioral Patterns
Focus: Algorithms and the assignment of responsibilities to objects
Problem solved:

Too tight coupling to a particular algorithm
♦ Creational Patterns

Focus: Creation of complex objects
Problems solved:

Hide how complex objects are created and put together
♦ Design patterns

Provide solutions to common problems.
Lead to extensible models and code.
Can be used as is or as examples of interface inheritance and delegation.
Apply the same principles to structure and to behavior.

