ineering

Chapter 8, Object Design: "

Object-Oriented Software Eng

Using UML, Patterns, and Java

Reuse and Patterns I ~ ™ %

Object Design: Closing the Gap

T\ Problem
'Appl i cation obj ect s\ |
|
Requir ements gap

Sol ution objects \ \ ______ X_-__-
|
Cust om obj ect s \ \ |

Object defign gap
I
I

O - t he- shel f_component s \ \ '''''' X"——'

|

System ddsign gap
|

Machine
[EE— - s

A More Detailed View of Object Design Activities

Select Subsystem

Reuse

Specification

Identifying missing
attributes & operations

]
Specifying exceptions )—

%(Idenn‘fying components

Adjusting components
Identifying patterns
—( Adjusting patterns

Bernd Bracgze & Allen Dutoit » s

Object Design

Object design is the process of adding details to the
requirements analysis and making implementation decisions

-

-

The object designer must choose among different ways to
implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.

Requirements Analysis: Use cases, functional and dynamic
model deliver operations for object model

Object Design: Iterates on the models, in particular the object
model and refine the models

-

-

+ Object Design serves as the basis of implementation

Bernd Brceze & Allen Dutoit 1 Changing Sys

Examples of Object Design Activities

-

Identification of existing components
Full definition of associations

.

Full definition of classes
+ System Design => Service
+ Object Design => API
Specifying the contract for each component

.

-

Choosing algorithms and data structures

.

Identifying possibilities of reuse

.

Detection of solution-domain classes

.

.

Optimization
Increase of inheritance

-

Decision on control

-

-

Packaging

Bernd Brucgge & Allen Dutoit i

Page 1

Detailed View of Object Design Activities (ctd)

O Check Use Cases

Restructuring

Revisiting
inheritance
Collapsing classes

Realizing associations

Optimization

Optimizing access
paths
Caching complex
computations
Delaying complex
computations

Bernd Brucsge & Allen Dutoit- : Congquering ©




A Little Bit of Terminology: Activities

+ Object-Oriented methodologies use these terms:
+ System Design Activity
+ Decomposition into subsystems
+ Object Design Activity
+ Implementation language chosen
+ Data structures and algorithms chosen
+ Structured analysis/structured design uses these terms:
+ Preliminary Design Activity
+ Decomposition into subsystems
+ Data structures are chosen
+ Detailed Design Activity
+ Algorithms are chosen
+ Data structures are refined
+ Implementation language is chosen
+ Typically in parallel with preliminary design, not a separate activity

Bernd Brucgee & Allen Dutoit Obiect-Oricated Software Engincering: Conquering Complex and Changing Sysem 7

The use of inheritance

+ Inheritance is used to achieve two different goals
+ Description of Taxonomies
+ Interface Specification

+ Identification of taxonomies
+ Used during requirements analysis.

+ Activity: identify application domain objects that are
hierarchically related

+ Goal: make the analysis model more understandable
+ Service specification

+ Used during object design

* Activity:

+ Goal: increase reusability, enhance modifiability and extensibility
+ Inheritance is found either by specialization or generalization

Bernd Brucgge & Allen Dutoit hani ’

Outline of the Lecture

+ Design Patterns
+ Usefulness of design patterns
+ Design Pattern Categories
+ Patterns covered in this lecture
+ Composite: Model dynamic aggregates
+ Facade: Interfacing to subsystems
+ Adapter: Interfacing to existing systems (legacy systems)
+ Bridge: Interfacing to existing and future systems
+ More patterns:
+ Abstract Factory: Provide manufacturer independence
+ Builder: Hide a complex creation process
+ Proxy: Provide Location transparency
+ Command: Encapsulate control flow
+ Observer: Provide publisher/subscribe mechanism
+ Strategy: Support family of algorithms, separate of policy and mechanism

Bernd Brceze & Allen Dutoit Object-Oriented Sotware Engincering: Conquering Comples and Changing Systems s

Metamodel for Inheritance

+ Inheritance is used during analysis and object design

Inheritance

Object
A Design
Analysis o
activity
. o
Taxonomy Toheritahce
Inheritance detected||Inheritance detected||Specification || Implementation
by specialization by generalization Inheritance Inheritance

Bernd Bructge & Allen Dutoit 0w

Taxonomy Example

Mammal

Tiger Wolf Wale

Bernd Bracsge & Allen Dutoit onquering C n

Implementation Inheritance

+ A very similar class is already implemented that does almost
the same as the desired class implementation.

: List
« Example: | have a List
class, | need a Stack Add0
class. How about Remove()

“Already

class from the List class jmplemented”

subclassing the Stack %
and providing three

Stack
methods, Push() and
Pop(), Top()? Puh ()
Pop()
Top()

Problem with implementation inheritance:

Some of the inherited operations might exhibit unwanted behavior.
What happens if the Stack user calls Remove() instead of Pop()?

len 1. D Using 2

Page 2




Implementation Inheritance vs Interface Inheritance

+ Implementation inheritance
+ Also called class inheritance
+ Goal: Extend an applications’ functionality by reusing functionality
in parent class
+ Inherit from an existing class with some or all operations already
implemented

+ Interface inheritance
+ Also called subtyping

+ Inherit from an abstract class with all operations specified, but not
yet implemented

Delegation as alternative to Implementation
Inheritance

+ Delegation is a way of making composition (for example
aggregation) as powerful for reuse as inheritance
+ In Delegation two objects are involved in handling a request
+ A receiving object delegates operations to its delegate.

¢ The developer can make sure that the receiving object does not
allow the client to misuse the delegate object

calls |, . Delegates td pel

Client

Duck: Delegation vs. Inheritance

¢ Description: Decide whether to use delegation or
inheritance for designing the following classes. Specify the
attributes and methods for each class. Draw the UML
diagram for the whole thing.

+  Array

*  Queue

+ Stack (

+  Tree ;\\\“

+  Linked list /: ~
¢ Process: &k\/g

¢ Work in pairs
+  You have about 10 minutes.

MA
e’

Delegation instead of Implementation Inheritance

+ Inheritance: Extending a Base class by a new operation or
overwriting an operation.

+ Delegation: Catching an operation and sending it to another
object.

+ Which of the following models is better for implementing a
stack? List

+Add| Stack :
+Rcm(()wc() Gﬁ List
g 4# Remove()

Comparison: Delegation vs Implementation Inheritance

¢ Delegation
+ Pro:

+ Flexibility: Any object can be replaced at run time by another one (as
long as it has the same type)

+ Con:
+ Inefficiency: Objects are encapsulated.
+ Inheritance
+ Pro:
+ Straightforward to use
+ Supported by many programming languages
+ Easy to implement new functionality

+ Con:
+ Inheritance exposes a subclass to the details of its parent class
+ Any change in the parent class impl ion forces the subclass to

change (which requires recompila‘tion of both)

+Push()
Stack +Pop() AddO
T
+Push() “Tor0
+Pop()
+Top()
Component Selection

+ Select existing
+ off-the-shelf class libraries
+ frameworks or
* components
+ Adjust the class libraries, framework or components
+ Change the API if you have the source code.
+ Use the adapter or bridge pattern if you don’t have access

+ Architecture Driven Design




Reuse...

<+ Look for existing classes in class libraries
+ JSAPL JTAPI, ....
< Select data structures appropriate to the algorithms
+ Container classes
+ Arrays, lists, queues, stacks, sets, trees, ...
< It might be necessary to define new internal classes and
operations

+ Complex operations defined in terms of lower-level operations
might need new classes and operations

Bernd Brcege & Allen Dutoit Object-Oricnted Sotware Engincering: Conquering Comples and Changing Systems

Classification of Frameworks

+ Frameworks can be classified by their position in the software
development process.

+ Frameworks can also be classified by the techniques used to
extend them.
+ Whitebox frameworks
+ Blackbox frameworks

White-box and Black-Box Frameworks

+ Whitebox frameworks:
+ Extensibility achieved through inheritance and dynamic binding.

+ Existing functionality is extended by subclassing framework base
classes and overriding predefined hook methods

+ Often design patterns such as the template method pattern are used

to override the hook methods.
+ Blackbox frameworks

+ Extensibility achieved by defining interfaces for components that
can be plugged into the framework.

+ Existing functionality is reused by defining components that
conform to a particular interface

+ These components are integrated with the framework via
delegation.

Bernd Bracsge & Allen Dutoit onquering C

Frameworks

+ A framework is a reusable partial application that can be
specialized to produce custom applications.

+ Frameworks are targeted to particular technologies, such as
data processing or cellular communications, or to application
domains, such as user interfaces or real-time avionics.

+ The key benefits of frameworks are reusability and
extensibility.
+ Reusability leverages of the application domain knowledge and
prior effort of experienced developers
+ Extensibility is provided by hook methods, which are overwritten
by the application to extend the framework.

+ Hook methods systematically decouple the interfaces and behaviors of
an application domain from the variations required by an application
in a particular context.

Bernd Brucgge & Allen Dutoit Object-Oriented Software Engincerin: Conquering Comples and Changing Systems

Frameworks in the Development Process

+ Infrastructure frameworks aim to simplify the software
development process
+ System infrastructure frameworks are used internally within a
software project and are usually not delivered to a client.
+ Middleware frameworks are used to integrate existing
distributed applications and components.
+ Examples: MFC, DCOM, Java RMI, WebObjects, WebSphere,
WebLogic Enterprise Application [BEA].
+ Enterprise application frameworks are application specific and
focus on domains

+ Example d tel icati avionics, envir
deling, manuf: ing, fi ial engi ing, enterprise business
activities.
Bernd B & Al Dok »

Class libraries and Frameworks

+ Class Libraries:
+ Less domain specific
+ Provide a smaller scope of reuse.
+ Class libraries are passive; no constraint on control flow.
+ Framework:
+ Classes cooperate for a family of related applications.
+ Frameworks are active; affect the flow of control.
«+ In practice, developers often use both:
+ Frameworks often use class libraries internally to simplify the
development of the framework.
+ Framework event handlers use class libraries to perform basic tasks
(e.g. string processing, file management, numerical analysis.... )

Bernd Brucsge & Allen Dutoit

Page 4




Components and Frameworks

+ Components
+ Self-contained instances of classes
+ Plugged together to form complete applications.
+ Blackbox that defines a cohesive set of operations,
+ Can be used based on the syntax and semantics of the interface.
+ Components can even be reused on the binary code level.

+ The advantage is that applications do not always have to be recompiled
when components change.

+ Frameworks:
+ Often used to develop components
+ Components are often plugged into blackbox frameworks.

Finding Objects

+ The hardest problems in object-oriented system development
are:
+ Identifying objects
+ Decomposing the system into objects
+ Requirements Analysis focuses on application domain:
+ Object identification
+ System Design addresses both, application and implementation
domain:
+ Subsystem Identification
+ Object Design focuses on implementation domain:
+ Additional solution objects

Berad Brucgge

Another Source for Finding Objects : Design Patterns

+ What are Design Patterns?
+ A design pattern describes a problem which occurs over and
over again in our environment
+ Then it describes the core of the solution to that problem, in

such a way that you can use this solution a million times over,
without ever doing it the same twice

Page 5

Example: Framework for Building Web Applications

WebBrowser WebObjects

/

WebServer WOapto

WebObjectsApplication

WORequest]

,
StaticHTML

Template | EOF |

RelationalDatabag

Techniques for Finding Objects

+ Requirements Analysis
+ Start with Use Cases. Identify participating objects
+ Textual analysis of flow of events (find nouns, verbs, ...)

+ Extract application domain objects by interviewing client
(application domain knowledge)

+ Find objects by using general knowledge
+ System Design

+ Subsystem decomposition

+ Try to identify layers and partitions
+ Object Design

+ Find additional objects by applying implementation domain
knowledge

Bernd Bructge & Allen Dutoit »

Introducing the Composite Pattern
+ Models tree structures that represent part-whole hierarchies with
arbitrary depth and width.

+ The Composite Pattern lets client treat individual objects and
compositions of these objects uniformly

Component |*

A

Composite
Leaf N
. Children
. Operation()
Operation() AddComponent
GetChild()




Modeling a Software System with a Composite Pattern

e
System

A

Class
Children

Subsystem

Bernd Brcege & Allen Dutoit Object-Oricnted Sotware Engincering: Conquering Comples and Changing Systems B

Graphic Applications also use Composite Patterns

S
O

* The Graphic Class represents
both primitives (Line, Circle)
and their containers (Picture)

Graphic "

A

L Girel Picture N
ne ircle
! " Children
Draw()
Draw() Draw() Add(Graphic g)
RemoveGraphic)

GetChild(int)

onquering C 5

The Composite Patterns models dynamic aggregates

Fixed Structure: Car
>

l «

*
‘ Doors H Wheels‘ ‘ Battery‘ ‘ Engine‘

Organization Chart (variable aggregate):

*

| School

Depanmen({

}O *

Compound Simple
Statement Statement

Bernd Brucgse & Alln Dutoit Object-Oriented Software Engincerin: Conquering Comples and Changing Systems »

Design Patterns reduce the Complexity of Models

+ To communicate a complex model we use navigation and reduction of
complexity

+ We do not simply use a picture from the CASE tool and dump it in front of
the user

+ The key is navigate through the model so the user can follow it.

+ We start with a very simple model and then decorate it incrementally
+ Start with key abstractions (use animation)
+ Then decorate the model with the additional classes
+ To reduce the complexity of the model even further, we
+ Apply the use of inheritance (for taxonomies, and for design patterns)
+ If the model is still too complex, we show the subclasses on a separate slide
+ Then identify (or introduced) patterns in the model
+ We make sure to use the name of the patterns

Bernd Bructge & Allen Dutoit .

Duck: Studying your object design

+ Description:
+ Review your current object design.
+ Identify any objects that are missing.
+ Does the composite pattern fit any part of your design?

+ Review all the attributes and methods, including their types
and visibility, of your objects. Fill in the missing attributes and

methods. ( «
¢ Process: ;\\\
+  Work in teams /‘ -~

3y
&2

N\
)

‘onquering Complex snd Chang =

+  You have about 10 minutes.

Bernd Bracsge & Allen Dutoit

Page 6

Adapter pattern
Clientinterface LegacyClass
Client  — ey
Request() ExistingRequest()
&
adaptee
Adapter
Request()

+ Delegation is used to
bind an Adapter and an Adaptee

+ Interface inheritance is use to specify the interface of the Adapter class.
+ Target and Adaptee (usually called legacy system) pre-exist the Adapter.
+ Target may be realized as an interface in Java.

Bernd Brucsge & Allen Dutoit inering s




Adapter Pattern

-

“Convert the interface of a class into another interface clients
expect.”

The adapter pattern lets classes work together that couldn’t
otherwise because of incompatible interfaces

-

-

Used to provide a new interface to existing legacy components
(Interface engineering, reengineering).

Also known as a wrapper

-

-

Two adapter patterns:
+ Class adapter:
+ Uses multiple inheritance to adapt one interface to another
+ Object adapter:
+ Uses single inheritance and delegation
Object adapters are much more frequent. We will only cover
object adapters (and call them therefore simply adapters)

-

Bernd Brcege & Allen Dutoit Object-Oricnted Sotware Engincering: Conquering Comples and Changing Systems W

Using a Bridge

-

The bridge pattern is used to provide multiple implementations
under the same interface.

-

Examples: Interface to a component that is incomplete, not yet
known or unavailable during testing

JAMES Project: if seat data is required to be read, but the seat
is not yet implemented, known, or only available by a
simulation, provide a bridge:

-

Seat

VIP (in Vehicle Subsystem)
GetPosition()
SetPositi

imp

Seatlmplementation

[ T 1
‘Stub Code ‘ AlMSeat ‘ ‘ SARTSeat ‘

ering »

Adapter vs Bridge

+ Similarities:
+ Both are used to hide the details of the underlying implementation.
+ Difference:

+ The adapter pattern is geared towards making unrelated
components work together

+ Applied to systems after they’re designed (reengineering, interface

engineering).
+ A bridge, on the other hand, is used up-front in a design to let
abstractions and i tations vary independently.

+ Green field engineering of an “extensible system”

+ New “beasts” can be added to the “object zoo”, even if these are not
known at analysis or system design time.

Bernd Bracsge & Allen Dutoit

onquering C @

Bridge Pattern

+ Use a bridge to “decouple an abstraction from its
implementation so that the two can vary independently”. (From
[Gamma et al 1995])

+ Also know as a Handle/Body pattern.

+ Allows different implementations of an interface to be decided
upon dynamically.

Bernd Brucgse & Alln Dutoit Object-Oriented Software Engincerin: Conquering Comples and Changing Systems B

Bridge Pattern

Client

imp
Abstraction Implementor

Operation() ©

X

Operationlmpl()

Imp->Op eraﬁonlmp();j ’—L‘

Refined Abstraction 1| [Refined Abstraction 2| |Concrete Implementor A

Concrete Implementor B

Operation() Operation() Operationlmp 1() Operationlmp 1()

Bernd Bructge & Allen Dutoit “«

Facade Pattern

+ Provides a unified interface to a set of objects in a subsystem.

+ A facade defines a higher-level interface that makes the
subsystem easier to use (i.c. it abstracts out the gory details)

+ Facades allow us to provide a closed architecture

Facade

Bernd Brucsge & Allen Dutoit inering @

Page 7




Design Example

Subsystem 1

Subsystem 1 can look into the
Subsystem 2 (vehicle subsystem)
and call on any component or class
operation at will.

-

This is “Ravioli Design”

-

-

Why is this good?

+ Efficiency

Why is this bad?

+ Can’t expect the caller to
understand how the subsystem
works or the complex
relationships within the
subsystem.

+ We can be assured that the

-

subsystem will be misused,
leading to non-portable code

Bernd Brcege & Allen Dutoit Object-Oricnted Sotware Engincering: Conquering Comples and Changing Systems @

Realizing an Opaque Architecture with a Facade

VIP Subsystem

O

+ The subsystem decides
exactly how it is accessed.

+ No need to worry about

misuse by callers
+ If a fagade is used the

subsystem can be used in an Vehicle Subsystem APl

early integration test

+ We need to write only a
driver

e o

SA/RT

Review: Design pattern
A design pattern is...

..a template solution to a recurring design problem
+ Look before re-inventing the wheel just one more time

..reusable design knowledge
+ Higher level than classes or datastructures (link lists,binary trees...)
+ Lower level than application frameworks

..an example of modifiable design
+ Learning to design starts by studying other designs

Bernd Bracsge & Allen Dutoit 2 onquering C .

Subsystem Design with Facade, Adapter, Bridge

+ The ideal structure of a subsystem consists of
+ an interface object

+ a set of application domain objects (entity objects) modeling real
entities or existing systems

+ Some of the application domain objects are interfaces to existing
systems

+ one or more control objects

+ We can use design patterns to realize this subsystem structure
+ Realization of the Interface Object: Facade

+ Provides the interface to the subsystem
+ Interface to existing systems: Adapter or Bridge

+ Provides the interface to existing system (legacy system)

+ The existing system is not necessarily object-oriented!

Bernd Brucgge & Allen Dutoit Object-Oriented Software Engincerin: Conquering Comples and Changing Systems “

Design Patterns encourage reusable Designs

+ A facade pattern should be used by all subsystems in a software system. The
fagade defines all the services of the subsystem.

+ The facade will delegate requests to the appropriate components within the
subsystem. Most of the time the facade does not need to be changed, when
the component is changed,

+ Adapters should be used to interface to existing components.

+ For example, a smart card software system should provide an adapter for a
particular smart card reader and other hardware that it controls and
queries.

+ Bridges should be used to interface to a set of objects

+ where the full set is not completely known at analysis or design time.

+ when the subsystem must be extended later after the system has been
deployed and client programs are in the field(dynamic extension).

+ Model/View/Controller should be used

+ when the interface changes much more rapidly than the application
domain.

Bernd Bructge & Allen Dutoit “

Why are modifiable designs important?
A modifiable design enables...

..an iterative and incremental development cycle
+ concurrent development
+ risk management
+ flexibility to change

..to minimize the introduction of new problems when fixing old
ones

..to deliver more functionality after initial delivery

Bernd Brucsge & Allen Dutoit inering -

Page 8




What makes a design modifiable?

+ Low coupling and high cohesion
¢ Clear dependencies
+ Explicit assumptions

How do design patterns help?

+ They are generalized from existing systems
+ They provide a shared vocabulary to designers

+ They provide examples of modifiable designs
+ Abstract classes
+ Delegation

On to More Patterns!

+ Structural pattern
+ Proxy

+ Creational Patterns
¢ Abstract Factory
¢ Builder

+ Behavioral pattern
+ Command
+ Observer
+ Strategy

Proxy Pattern: Motivation

¢ Itis 15:00pm. I am sitting at my 14.4 baud modem connection
and retrieve a fancy web site from the US, This is prime web
time all over the US. So I am getting 10 bits/sec.

+ What can I do?

Berad Brucgge

Proxy Pattern

+ What is expensive?
¢ Object Creation
¢ Object Initialization
+ Defer object creation and object initialization to the time you
need the object
+ Proxy pattern:
+ Reduces the cost of accessing objects

¢ Uses another object (“the proxy”) that acts as a stand-in for the real
object

+ The proxy creates the real object only if the user asks for it

Bernd Bructge & Allen Dutoit P

Proxy pattern Subj
Request()
1
Proxy realSubject RealSubject

Request() Request()

+ Interface inheritance is used to specify the interface shared by
Proxy and RealSubject.

+ Delegation is used to catch and forward any accesses to the
RealSubject (if desired)

+ Proxy patterns can be used for lazy evaluation and for remote
invocation.

+ Proxy patterns can be implemented with a Java interface.

Bernd Brucsge e s

Page 9

Proxy Applicability

+ Remote Proxy
+ Local representative for an object in a different address space
+ Caching of information: Good if information does not change too
often
+ Virtual Proxy
+ Object is too expensive to create or too expensive to download
¢ Proxy is a stand-in
+ Protection Proxy
+ Proxy provides access control to the real object
+ Useful when different objects should have different access and
viewing rights for the same document.

+ Example: Grade information for a student shared by
administrators, teachers and students.




Virtual Proxy example Image
boundingBox()

draw()

I : |
| Proxylmage | : L]
_Proxylmage realSubject| Reallmage
boundingBox()
draw() draw()

+ Images are stored and loaded separately from text

+ If a Reallmage is not loaded a Proxylmage displays a grey
rectangle in place of the image

+ The client cannot tell that it is dealing with a Proxylmage
instead of a Reallmage

+ A proxy pattern can be easily combined with a Bridge

Bernd Brucgge & Allen Dutoit Object-Oriented Softwars Engincering: Conquering Comples and Changi

Bernd Brucgee & Allen Do hanging Syt s
Controlling Access
Preferences for Bernd Bruegyge
Calegery.
e [+]  dvancea Charge prefersnces that affect the srire procict
Cokrs
w Mavigiter [ bustermaticalhy Toud sriagees aeed ather data lypes
Lingusges (Otherwise, alick the Images buttan 18 load wien needed)
sopneata "
o [ETre
b Advascat B rnat asvasier
Enable style shrts
Enatle Autohstall
] St il abiwis s sretngrins P pasiwerd
— Coies
(D) hurpt all e
8 et oy corking Uhat ged sent birk 4 the or iinating ser vor
() B et pcons souke
[t e s mcowption & ke
= [_thelp Cancel
Bernd Bruee & Al Do : : B

After

D1 srtsi e {yberias Gutpas! - (amputers setrbushs feiblaps bardware & iaBware - fary 8 faday - (3e
[& # 3 & » % B = £ &
B ioTrd | G e B s P ey

CUTPOSTTOAY
Jure 10, 1996

The Cool Place (o Bhep For Computer Slull/

e (A

PC Mac
$199.95 S1649.00
a8
8 Power Soarch
24 J
| PE— r
[ETP— “

Towards a Pattern Taxonomy

¢ Structural Patterns
+ Adapters, Bridges, Facades, and Proxies are variations on a single theme:
+ They reduce the coupling between two or more classes
+ They introduce an abstract class to enable future extensions
+ They encapsulate complex structures
+ Behavioral Patterns

+ Here we are concerned with algorithms and the assignment of
responsibilies between objects: Who does what?

+ Behavioral patterns allow us to characterize complex control flows that are
difficult to follow at runtime.

+ Creational Patterns

+ Here our goal is to provide a simple abstraction for a complex instantiation
process.

+ We want to make the system independent from the way its objects are
created, composed and represented.

Bernd Bracsge & Allen Dutoit

: Conquering © B

A Pattern Taxonomy

T Creational
Structural eation:
Pattern o
Behavioral
Pattern
Abstract Builder
Observer| | Strategy Factory Pattern
Adapter Bridge Facade Proxy

Page 10




Command Pattern: Motivation

+ You want to build a user interface

+ You want to provide menus

+ You want to make the user interface reusable across many
applications

+ You cannot hardcode the meanings of the menus for the various
applications

+ The applications only know what has to be done when a menu is
selected.

+ Such a menu can easily be implemented with the Command
Pattern

Bernd Brcege & Allen Dutoit

- Conquering Comples and Changing Syst

Command pattern
> Command
Invoker
execute
Client A 0
. binds L
ConcreteCommand
action() execute()

+ Client creates a ConcreteCommand and binds it with a
Receiver.

+ Client hands the ConcreteCommand over to the Invoker
which stores it.

+ The Invoker has the responsibility to do the command
(“execute” or “undo”).

Bernd Brucgge & Allen Dutoit Object-Oriented Software Engincerin: Conquering Comples and Changing Systems

Command pattern Applicability

+ “Encapsulate a request as an object, thereby letting you
+ parameterize clients with different requests,
¢ queue or log requests, and
+ support undoable operations.”

¢ Uses:
+ Undo queues
+ Database transaction buffering

Bernd Brucsge & Allen Dutoit . ers

Observer pattern

+ “Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.”

+ Also called “Publish and Subscribe”

Observer pattern (continued)

Observers Subject

SbesignPatierns2.ppt Info w.
S

F —

Kimd ; Pewwr Foinl docarrmnl T,
Blew ! 120K e disk (127 bryhes wsed)
Whare Tasching: TP s 17 461
L T
Comp-Based Software Engineering
e Kied Lust
TR Aorseat®r !\(hm Fr,
BTIK PowwPoink docurrmmt
K PowirPoint dscunint fgn S
Fsl - i " Fri
2 Aorsbat™ Lustyem® Fri,
T Aoy ge e
KT adltnint dacumrant i,
LoIBE Awrobat™ Cushange

Teareley e B
O Ssemwarelifecyst
D errapct runagumant
D) €Pragest Munapsmemt pdt

) etesipmhationate pat
O sovrigRatimate gt A"“‘ OB PrwerPoink documml

it cigedattarnaz 2ol VKK Pewiriaint souraat
Loy S ———

T —

00 it mbestion it FIH i sbal™ sy .. Fri, g v

Bernd Bracsge & Allen Dutoit

: Conquering C

¢ Uses:
+ Mai y across redundant state
+ Optimizing batch ch to maintai i y
Observer pattern (cont’d)
Subj observers *
ver) Observer.
detach(observer) update()
notify() A
A ‘
1 bject
R SUDe | ConcreteObserver |
ConcreteSubject update()
getState()
setState(newState; observerState
subjectState

+ The Subject represents the actual state, the Observers
represent different views of the state.

¢ Observer can be implemented as a Java interface.

+ Subject is a super class (needs to store the observers vector)
not an interface.

Bernd Brucsge & Allen Dutoit

Page 11




Sequence diagram for scenario:
Change filename to “foo”

aFile aninfoView ‘ ‘ aListView ‘
T

Attach()

Attach() D

setState(“foo”)

'Subject goes through all its
bservers and calls update() on
them, asking for the new
state is decoupled from
the notification

update()

Animated Sequence diagram

aFile ‘ ‘ aninfoView ‘ ‘ aListView
T
MH Attach() D
I setState(“foo”) ﬂ
notify() !
|
I
i
dat

update() update() i

“nfoou -
i
| |
I I

A Pattern Taxonomy

Creational
Pattern

Structural
Pattern

Behavioral
Pattern

Abstract Builder

Strategy Pattern

+ Many different algorithms exists for the same task
+ Examples:
+ Breaking a stream of text into lines
+ Parsing a set of tokens into an abstract syntax tree
+ Sorting a list of customers
+ The different algorithms will be appropriate at different times
+ Rapid prototyping vs delivery of final product
+ We don’t want to support all the algorithms if we don’t need
them

+ If we need a new algorithm, we want to add it easily without
disturbing the application using the algorithm

Bernd Bructge & Allen Dutoit

Factory Pattern
Adapter Bridge Facade Proxy
Strategy Pattern
Policy
*
Context [ tategy |
Contextlnterface() Algorithminterface

A

—

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

Algorithminterface()

Algori face() Algori face()

Poali cy decides which Srat egy is best given the current Cont ext

Bern e n

Dutoit

e & A

Applying a Strategy Pattern in a Database Application

Database .

9y

Search() Sort()

Sort() A

BubbleSort QuickSort MergeSort

Sort() Sort() Sort()

Bernd Brucgge & A




Applicability of Strategy Pattern

+ Many related classes differ only in their behavior. Strategy
allows to configure a single class with one of many behaviors

+ Different variants of an algorithm are needed that trade-off

space against time. All these variants can be implemented as a
class hierarchy of algorithms

Bernd Brcege & Allen Dutoit Object-Oriented Softwre Engincering: Conquering Comples and Changing Systems ”»

A Pattern Taxonomy

Abstract Factory Motivation

+ 2 Examples

+ Consider a user interface toolkit that supports multiple looks
and feel standards such as Motif, Windows 95 or the finder in
MacOS.

+ How can you write a single user interface and make it portable
across the different look and feel standards for these window
managers?

+ Consider a facility management system for an intelligent house
that supports different control systems such as Siemens’
Instabus, Johnson & Control Metasys or Zumtobe’s proprietary
standard.

+ How can you write a single control system that is independent from
the manufacturer?

Bernd Brucgy

Creational
Structural Pattern
Pattern
atte Behavioral
VAN
Abstract .
Facto Builder
i Pattern
Adapter Bridge Facade Proxy
ernd Bruceee & Al Do Objct-Oricted Saftwars Enincrin: Conaierig Comples 373 Chargin Sytens B
Abstract Factory
AbstractFactory AbstractProductA
Client CreateProductA
CreateProductB
ProductA1 ‘ ‘ ProductA2 |==,
ConcreteFactory [f===}=== H AbstractProductB H
t H H
CreateProductA :
CreateProductB . H
+ ProductB1 ‘ ‘ ProductB2 ‘
ConcreteFactory [ss=ssss STTTTI I I T I T
2
CreateProductA Initiation Assocati_on:_
CreateProductB C_Iass ConcreteFactoryz2 initiates the
sociated classes Pr 2 and Product.
Bernd Bruees & Alken Do T

Applicability for Abstract Factory Pattern

+ Independence from Initialization or Representation:
+ The system should be independent of how its products are created,
composed or represented
+ Manufacturer Independence:
+ A system should be configured with one family of products, where one has
a choice from many different families.
+ You want to provide a class library for a (“facility
library”), but you don’t want to reveal what particular product you are
using.

+ Constraints on related products
+ A family of related products is designed to be used together and you need
to enforce this constraint
+ Cope with upcoming change:
+ You use one particular product family, but you expect that the underlying
technology is changing very soon, and new products will appear on the
market.

Bernd Bracsge & Allen Dutoit : Conquering © i

Example: A Facility Management System for the Intelligent

Workplace
kplace )
Fac“ity
Mgt InitLightSystem
sy nitBlindSy
InitACSystem |

Controller

InstabusLight
Controller

ZumbobelLight }_

SiemensFactory m

InitLightSystem

InitBlindSystem £
InitACSystem

ZumtobelBlind
Controller

InstabusBlind
Controller

Z actor

y

InitLightSystem

InitBlindsystem
InitACSystem

Bernd Brucsge & Allen Dutoit inering K

Page 13




Builder Pattern Motivation

+ Conversion of documents
+ Software companies make their money by introducing new
formats, forcing users to upgrades
+ But you don’t want to upgrade your software every time there is an
update of the format for Word documents
¢ Idea: A reader for RTF format
+ Convert RTF to many text formats (EMACS, Framemaker 4.0,
Fr ker 5.0, Fr ker 5.5, HTML, SGML, WordPerfect
3.5, WordPerfect 7.0, ....)
+ Problem: The number of conversions is open-ended.

+ Solution
+ Configure the RTF Reader with a “builder” object that specializes
in conversions to any known format and can easily be extended to
deal with any new format appearing on the market

Bernd Brcege & Allen Dutoit Object-Oricnted Sotware Engincering: Conquering Comples and Changing Systems »

Builder Pattern

Builder
BuildPart()

Director
Construct()

For all objects in Structure {
Builder->BuildPart()

}
ConcreteBuilderB 1::.| Represen-
BuildPart() tation B
GetResult()
ConcreteBuilder N
A BuildPart() ‘o,
GetResult() **.,] Represen-
tation A

Bernd Brucgge & Allen Dutoit Object-Oriented Software Engincerin: Conquering Comples and Changing Systems "

Example
RTFReade
T Parse() TextConverter
ConvertCharacter()
‘ ConvertFontChange
ConvertParagraph()
While (t = GetNextToken()) {

Switch t.Type {
CHAR: builder->ConvertCharacter(t.Char)
FONT: builder->ConvertFont(t.Font)
PARA: builder->ConvertParagraph
}

}

TexConverter . AsciiConverter « HTMLConverter »
ConvertCharacter() * ConvertCharactef| ConvertCharacter
ConvertFontChange: COnvenFontChadé)e Cgr?\y:rtFonigﬁaigL
ConvenParalsra{’h(): ConvenParglgr h() ConvertParagrdph()
GetASCliText() GetASCII ex?f) GetASClIText()
5

¥
.
O

TeXText AsciiText HTMLText

When do you use the Builder Pattern?

+ The creation of a complex product must be independent of the
particular parts that make up the product
+ In particular, the creation process should not know about the
assembly process (how the parts are put together to make up the
product)
+ The creation process must allow different representations for
the object that is constructed. Examples:
+ A house with one floor, 3 rooms, 2 hallways, 1 garage and three
doors.

+ A skyscraper with 50 floors, 15 offices and S hallways on each floor.
The office layout varies for each floor.

Bernd Bructge & Allen Dutoit w

Comparison: Abstract Factory vs Builder

+ Abstract Factory
+ Focuses on product family
+ The products can be simple (“light bulb”) or complex (“engine”)
+ Does not hide the creation process
+ The product is immediately returned
+ Builder

+ The underlying product needs to be constructed as part of the
system, but the creation is very complex

+ The construction of the complex product changes from time to time
+ The builder patterns hides the creation process from the user:
+ The product is returned after creation as a final step
+ Abstract Factory and Builder work well together for a family of
multiple complex products

Bernd Bracsge & Allen Dutoit onquering C 5

Summary 1

+ Object design closes the gap between the requirements and
the machine.

+ Object design is the process of adding details to the
requirements analysis and making implementation decisions

+ Object design activities include:
v Identification of Reuse
v' Identification of Inheritance and Delegation opportunities
v' Component selection

¢ Object design is documented in the Object Design Document,
which can be automatically generated from a specification
using tools such as JavaDoc.

Bernd Brucsge & Allen Dutoit inering "

Page 14




Summary 11

+ Design patterns are partial solutions to common problems such
as

+ such as separating an interface from a number of alternate
implementations

+ wrapping around a set of legacy classes

+ protecting a caller from ck iated with specific platforms.
+ A design pattern is composed of a small number of classes

+ use delegation and inheritance

+ provide a robust and modifiable solution.

+ These classes can be adapted and refined for the specific
system under construction.
+ Customization of the system
+ Reuse of existing solutions

Object-Oriented Softwre Engincering: Conquering Comples and Changing Systems 5

Summary 111

+ Composite Pattern:
+ Models trees with dynamic width and dynamic depth
+ Facade Pattern:
+ Interface to a subsystem
+ closed vs open architecture
+ Adapter Pattern:
+ Interface to reality
+ Bridge Pattern:
+ Interface to reality and prepare for future

Bernd Brucgge & Allen Dutoit Object-Oriented Softwars Engincering: Conquering Comples and Changi

Summary IV

¢ Structural Patterns
+ Focus: How objects are composed to form larger structures
+ Problems solved:
+ Realize new i ity from old i ity,
+ Provide flexibility and extensibility
+ Behavioral Patterns
+ Focus: Algorithms and the assignment of responsibilities to objects
+ Problem solved:
+ Too tight coupling to a particular algorithm
+ Creational Patterns
+ Focus: Creation of complex objects
+ Problems solved:
+ Hide how complex objects are created and put together
+ Design patterns
+ Provide solutions to common problems.

+ Lead to extensible models and code.
+ Can be used as is or as examples of interface inheritance and delegation.
+ Apply the same principles to structure and to behavior.

Page 15




