
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng

Chapter 9,
Object Design:

Specifying Interfaces

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Object Design

! Object design is the process of adding details to the
requirements analysis and making implementation decisions

! The object designer must choose among different ways to
implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.
" Requirements Analysis: The functional model and the dynamic

model deliver operations for the object model
" Object Design: We decide on where to put these operations in the

object model

! Object design serves as the basis of implementation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 3

Object Design: Closing the Gap

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requir ements gap

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 4

Developers play different Roles during Object Design

Developer

Call Class

Class Extender

Class Implementor

Class User

Realize Class

Refine Class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Class user versus Class Extender

Game

TicTacToe Chess

League

Tournament

1

*

Developers responsible for
the implementation of League are

class users of Game

The developer responsible for
the implementation of TicTacToe

is a class extender of Game

Developers responsible for
the implementation of Game are

class implementors

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

Specifying Interfaces

! Requirements analysis activities
" Identifying attributes and operations without

specifying their types or their parameters.

! Object design: Three activities
1. Add visibility information
2. Add type signature information
3. Add contracts

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 7

1. Add Visibility Information

UML defines three levels of visibility:
! Private (Class implementor):

" A private attribute can be accessed only by the class in which it is
defined.

" A private operation can be invoked only by the class in which it is
defined.

" Private attributes and operations cannot be accessed by subclasses
or other classes.

! Protected (Class extender):
" A protected attribute or operation can be accessed by the class in

which it is defined and on any descendent of the class.

! Public (Class user):
" A public attribute or operation can be accessed by any class.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

Implementation of UML Visibility in Java

Tournament

- maxNumPlayers: int

+ acceptPlayer(p:Player)
+ removePlayer(p:Player)

+ getMaxNumPlayers():int
+ getPlayers(): List

+ isPlayerAccepted(p:Player):boolean

public class Tournament {
private int maxNumPlayers;

public Tournament(League l, int maxNumPlayers)
public int getMaxNumPlayers() {…};
public List getPlayers() {…};
public void acceptPlayer(Player p) {…};
public void removePlayer(Player p) {…};
public boolean isPlayerAccepted(Player p) {…};

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

Information Hiding Heuristics

! Carefully define the public interface for classes as well as
subsystems (façade)

! Always apply the “Need to know” principle.
" Only if somebody needs to access the information, make it publicly

possible, but then only through well defined channels, so you always
know the access.

! The fewer an operation knows
" the less likely it will be affected by any changes
" the easier the class can be changed

! Trade-off: Information hiding vs efficiency
" Accessing a private attribute might be too slow (for example in real-

time systems or games)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

Information Hiding Design Principles

! Only the operations of a class are allowed to manipulate its
attributes
" Access attributes only via operations.

! Hide external objects at subsystem boundary
" Define abstract class interfaces which mediate between system and

external world as well as between subsystems

! Do not apply an operation to the result of another operation.
" Write a new operation that combines the two operations.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

2. Add Type Signature Information

Hashtable

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Hashtable

+put()
+get()
+remove()
+containsKey()
+size()

-numElements:int

Attributes and operations
without type information

are acceptable during analysis

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Team Activity: Visibility and Signatures
♦ Description: Select one of your classes. Complete the

visibility and signature for that class.
♦ Process:

" Work in teams
" You have about 10 minutes.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

3. Add Contracts
! Contracts on a class enable caller and callee to share the same assumptions

about the class.
! Contracts include three types of constraints:
! Invariant:

" A predicate that is always true for all instances of a class. Invariants are
constraints associated with classes or interfaces.

! Precondition:
" Preconditions are predicates associated with a specific operation and must

be true before the operation is invoked. Preconditions are used to specify
constraints that a caller must meet before calling an operation.

! Postcondition:
" Postconditions are predicates associated with a specific operation and must

be true after an operation is invoked. Postconditions are used to specify
constraints that the object must ensure after the invocation of the
operation.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

Expressing constraints in UML Models

! OCL (Object Constraint Language)
" OCL allows constraints to be formally specified on single model

elements or groups of model elements
" A constraint is expressed as an OCL expression returning the value

true or false. OCL is not a procedural language (cannot constrain
control flow).

! OCL expressions for Hashtable operation put():
" Invariant:

context Hashtable inv: numElements >= 0 OCL expression
Context is a class

operation put
" Precondition:

context Hashtable::put(key, entry) pre:!containsKey(key)
" Post-condition:

context Hashtable::put(key, entry) post: containsKey(key) and
get(key) = entry

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Expressing Constraints in UML Models

! A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

<<precondition>>
!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
get(key) == entry

<<postcondition>>
!containsKey(key)

<<invariant>>
numElements >= 0

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean
size():int

numElements:int

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Contract for acceptPlayer in Tournament

context Tournament::acceptPlayer(p) pre:
not isPlayerAccepted(p)

context Tournament::acceptPlayer(p) pre:
getNumPlayers() < getMaxNumPlayers()

context Tournament::acceptPlayer(p) post:
isPlayerAccepted(p)

context Tournament::acceptPlayer(p) post:
getNumPlayers() = @pre.getNumPlayers() + 1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Contract for removePlayer in Tournament

context Tournament::removePlayer(p) pre:
isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
not isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
getNumPlayers() = @pre.getNumPlayers() - 1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Annotation of Tournament class
public class Tournament {

/** The maximum number of players
* is positive at all times.
* @invariant maxNumPlayers > 0
*/

private int maxNumPlayers;

/** The players List contains
* references to Players who are
* are registered with the
* Tournament. */

private List players;

/** Returns the current number of
* players in the tournament. */

public int getNumPlayers() {…}

/** Returns the maximum number of
* players in the tournament. */

public int getMaxNumPlayers() {…}

/** The acceptPlayer() operation
* assumes that the specified
* player has not been accepted
* in the Tournament yet.
* @pre !isPlayerAccepted(p)
* @pre getNumPlayers()<maxNumPlayers
* @post isPlayerAccepted(p)
* @post getNumPlayers() =
* @pre.getNumPlayers() + 1
*/

public void acceptPlayer (Player p)
{…}

/** The removePlayer() operation
* assumes that the specified player
* is currently in the Tournament.
* @pre isPlayerAccepted(p)
* @post !isPlayerAccepted(p)
* @post getNumPlayers() =

@pre.getNumPlayers() - 1
*/

public void removePlayer(Player p) {…}

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Team Activity: Contracts
♦ Description: Select one of your classes. Complete the

contracts for that class.
♦ Process:

" Work in teams
" You have about 10 minutes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Constraints can involve more than one class

How do we specify constraints on
more than one class?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

3 Types of Navigation through a Class Diagram

Tournament

start:Date
end:Date

League

Player Tournament

League

1. Local attribute 2. Directly related class 3. Indirectly related class

*

*

*

*

Player
*

Any OCL constraint for any class diagram can be built
using only a combination of these three navigation types!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

ARENA Example: League, Tournament and Player

players

* tournaments

{ordered}

Tournament

+start:Date
+end:Date

+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date

+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Model Refinement with 3 additional Constraints

♦ A Tournament’s planned duration must be under one week.
♦ Players can be accepted in a Tournament only if they are

already registered with the corresponding League.
♦ The number of active Players in a League are those that have

taken part in at least one Tournament of the League.

♦ To better understand these constraints we instantiate the class
diagram for a specific group of instances
" 2 Leagues, 2 Tournaments and 5 Players

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Instance Diagram: 2 Leagues, 2 Tournaments, and 5
Players

alice:Player

bob:Player

marc:Player

winter:Tournament

tttExpert:League

joe:Player

xmas:Tournament

chessNovice:League

start=Dec 21
end=Dec 22

start=Dec 23
end=Dec 25

zoe:Player

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Specifying the Model Constraints

Local attribute navigation
context Tournament inv:

end - start <= Calendar.WEEK

players

* tournaments

{ordered}

Tournament

+start:Date
+end:Date

+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date

+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments*

Directly related class navigation
context

Tournament::acceptPlayer(p)
pre:
league.players->includes(p)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Specifying the Model Constraints

Local attribute navigation
context Tournament inv:

end - start <= Calendar.WEEK

Directly related class navigation
context Tournament::acceptPlayer(p) pre:

league.players->includes(p)

Indirectly related class navigation
context League::getActivePlayers post:

result = tournaments.players->asSet
players

* tournaments

{ordered}

Tournament

+start:Date
+end:Date

+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date

+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

OCL supports Quantification

♦ OCL forall quantifier
/* All Matches in a Tournament occur within the Tournament’s time frame */

context Tournament inv:
matches->forAll(m:Match |

m.start.after(t.start) and m.end.before(t.end))

♦ OCL exists quantifier
/* Each Tournament conducts at least one Match on the first day of the

Tournament */

context Tournament inv:
matches->exists(m:Match | m.start.equals(start))

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Summary
♦ There are three different roles for developers during object

design
" Class user, class implementor and class extender

♦ During object design - and only during object design - we
specify visibility rules

♦ Constraints are boolean expressions on model elements
♦ Contracts are constraints on a class enable class users,

implementors and extenders to share the same assumption
about the class (“Design by contract”)

♦ OCL is a language that allows us to express constraints on
UML models

♦ Complicated constratins involving more than one class,
attribute or operation can be expressed with 3 basic navigation
types.

