ener pue ‘sullied ‘TINN Busn
bulieauibu3 8 rem1jos pa1ue1l0-199 190

Object Design

« Object design is the process of adding detailsto the
requirements analysis and making implementation decisions

+ The object designer must choose among different ways to
Implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.

* Requirements Analysis. The functional model and the dynamic
model deliver operationsfor the object model

¢ Object Design: Wedecide on whereto put these operationsin the
object model

+ Object design serves as the basis of implementation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Object Design: Closing the Gap
‘ System 5

‘Application objects 5

_— N

\

‘ Solution objects 5 \

‘ Custom objects > \

N

‘ Off-the-shelf components >

T

Machine

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Developers play different Roles during Object Design

X

ZCX/,///’///// Class User

Developer

Bernd Bruegge & Allen Dutoit

Class Implementor

Class Extender

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

’

Call Class

’

Realize Class

§

Refine Class

Class user versus Class Extender

Developers responsible for
the implementation of Gam
class implementors

Developers responsible for
the implementation of Leagu
class users of Game

are

are

D —
> >
= P
League Game

Tournament TicTacToe Chess

he developer responsible for
the implementation of TicTacToe
IS a class extender of Game

Bernd Bruegge & Allen H. Dutoit Object-Oriented Softwarermgrre gowL, Patterns, and Java 5

Specifying I nterfaces

+~ Reguirements analysis activities

¢ |dentifying attributes and oper ations without
gpecifying their typesor their parameters.

« Object design: Three activities
1. Add visibility information
2. Add type signatureinformation
3. Add contracts

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

1. Add Visihility I nformation

UML defines three levels of visibility:

< Private (Class implementor):

+ A private attribute can be accessed only by the classin which it is
defined.

+ A private operation can beinvoked only by theclassin which it is
defined.

* Private attributes and oper ations cannot be accessed by subclasses
or other classes.

+ Protected (Class extender):

+ A protected attribute or operation can be accessed by the classin
which it is defined and on any descendent of the class.

< Public (Class user):
+ A public attribute or operation can be accessed by any class.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

mplementation of UML Visbility in Java

Tournament

maxNumPlayers: int

‘oted(p Player) :bpolean

int maxNumPlayers;

pubTrc Tournament(League I, 1nt maxNumPlayers)
public int getMaxNumPlayers(Q) {.}:;

public List getPlayers(Q {.}:

public void acceptPlayer(Player p) {.};

ey reoid removePlayer(Player p) {.};
oolean isPlayerAccepted(Player p) {.};

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

| nformation Hiding Heuristics

« Carefully define the public interface for classes aswell as
subsystems (facade)
+ Always apply the “Need to know” principle.

+ Only if somebody needsto access the information, make it publicly
possible, but then only through well defined channels, so you always
know the access.

< The fewer an operation knows
* thelesslikely it will be affected by any changes
* the easier the class can be changed

« Trade-off: Information hiding vs efficiency

¢ Accessing a private attribute might be too slow (for examplein real-
time systems or games)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

| nformation Hiding Design Principles

« Only the operations of aclass are allowed to manipulate its
attributes

+ Access attributes only via oper ations.

+ Hide external objects at subsystem boundary

+ Define abstract class interfaces which mediate between system and
external world aswell as between subsystems

« Do not apply an operation to the result of another operation.
+ Write anew operation that combinesthe two operations.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

2. Add Type Signature I nformation

Hashtable
—numElements:int
+put()
+get()
+remove()
+containskKey()
+s1ze()

Attributes and operations
without type information
are acceptable during analysis

Bernd Bruegge & Allen Dutoit

Hashtable

-numElements:int

+put(key:Object,entry:0Object)
+get(key:Object):Object
+remove(key:0Object)
+containsKey(key:Object) :boolean
+s1ze():int

Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

¢

¢

Team Activity: Visibility and Signatures
Description: Select one of your classes. Complete the
visibility and signature for that class.

Process.
¢ Work inteams
¢ You have about 10 minutes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

12

3. Add Contracts

« Contracts on a class enable caller and callee to share the same assumptions
about the class.

Contracts include three types of constraints:

Invariant:

+ A predicatethat isalwaystruefor all instances of a class. Invariantsare
constraints associated with classes or interfaces.

Precondition:

+ Preconditions are predicates associated with a specific operation and must
betrue beforethe operation isinvoked. Preconditions ar e used to specify
constraintsthat a caller must meet before calling an operation.

Postcondition:

+ Postconditions ar e predicates associated with a specific operation and must
betrue after an operation isinvoked. Postconditions ar e used to specify
constraintsthat the object must ensure after the invocation of the
oper ation.

L)

0.0

L)

>

L)

*

L)

0.0

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

EXxpressing constraintsin UML Models

+ OCL (Object Constraint Language)

+ OCL allows constraintsto be formally specified on single model
elements or groups of model elements

+ A constraint isexpressed asan OCL expression returning the value
trueor false. OCL isnot a procedural language (cannot constrain
control flow).

< OCL expressions for Hashtable operation put():

* Invariant:
+ context Hashtable inv: numElements >= 0 OCL expressian

Context is a class
N operation put O
¢ Precondition: > O

— (@)
o context Hashtable::put(key, entry) pre:!lcontainsKey(key)

* Post-condition:

+ context Hashtable::put(key, entry) post: containsKey(key) and
get(key) = entry

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

Expressing Constraintsin UML Models

« A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

) <<invariant>>
. numElements >= 0

<<precondition>> HashTable —
<<postcondition>>

lcontainsKey(key) [~ __|numElements:int -1 o) o e

— | put(key,entry:Object) ~ —
<<r|c])re_(l:qond|t|c:<n>> -~ " | get(key):Object
| remove(key:Object)- - _

<<precondition>> Iy .-~ [containsKey(key:Object):boolean
)

containsK ey(key size():int <<postcondition>>

Icontain k

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Contract for acceptPlayer in Tournament

context Tournament:.acceptPlayer(p) pre:
not isPlayerAccepted(p)

context Tournament::acceptPlayer(p) pre:
getNumPlayers() < getMaxNumPlayers()

context Tournament::acceptPlayer(p) post:
IsPlayerAccepted(p)

context Tournament::acceptPlayer(p) post:
getNumPlayers() = @pre.getNumPlayers() + 1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

16

Contract for removePlayer in Tournament

context Tournament:.removePlayer(p) pre:
IsPlayerAccepted(p)

context Tournament::removePlayer(p) post:
not isPlayerAccepted(p)

context Tournament::.removePlayer(p) post:
getNumPlayers() = @pre.getNumPlayers() - 1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

17

Annotation of Tournament class

public class Tournament { />** The acceptPlayer() operation
/** The maximum number of players * assumes that the specified

* js positive at all times. : player has not been accepted

* @invariant maxNumPlayers > 0 L m the Tournament yet.

*/ @pre !'isPlayerAccepted(p)

. n * @pre getNumPlayers()<maxNumPlayers
private int maxNumPlayers; * @post isPlayerAccepted(p)
* @post getNumPlayers() =

/** The players List contains N @pre.getNumPlayers() + 1

* references to Players who are /

* are registered with the public void acceptPlayer (Player p)

* Tournament. */ {.}

private List players;

/** The removePlayer() operation
* assumes that the specified player
iIs currently In the Tournament.

/** Returns the current number of -
* @pre i1sPlayerAccepted(p)
*x
*x

* players in the tournament. */

public int getNumPlayers() {.} @post lisPlayerAccepted(p)

@post getNumPlayers() =

/** Returns the maximum number of . @pre.getNumPlayers() - 1
* players in the tournament. */ /
public int getMaxNumPlayers() {.} public void removePlayer(Player p) {.}
by

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

¢

¢

Team Activity: Contracts

Description: Select one of your classes. Complete the
contracts for that class.

Process.

¢+ Work inteams

¢+ You have about 10 minutes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

19

Constraints can involve more than one class

How do we specify constraints on
more than one class?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

20

3 Types of Navigation through a Class Diagram

1. Local attribute 2. Directly related class 3. Indirectly related class
Tournament League League
start:Date * 0
end:Date

* *
Player Tournament
Player

Any OCL constraint for any class diagram can be built
using only a combination of these three navigation types!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

ARENA Example: League, Tournament and Player

Bernd Bruegge & Allen H. Dutoit

players

League

+start:Date
+end:Date

+getActivePlayers()

{ordered}
*1 tournaments

Tournament

+start:Date
+end:Date

+acceptPlayer(p:Player)

*1 tournaments

*| players

*

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Player

+name:String

+email:String

22

Model Refinement with 3 additional Constraints

+ A Tournament’s planned duration must be under one week.

+ Players can be accepted in a Tournament only if they are
already registered with the corresponding League.

+ The number of active Playersin a L eague are those that have
taken part in at least one Tournament of the League.

o TO0 better understand these constraints we instantiate the class
diagram for a specific group of instances

+ 2 Leagues, 2 Tournamentsand 5 Players

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

| nstance Diagram: 2 Leagues, 2 Tournaments, and 5
Players

tttExpert:League chessNovice:Leaque
winter:Tournament xmas:Tournament
start=Dec 21 start=Dec 23
end=Dec 22 end=Dec 25

=1 alice:Plavyer

bob:Plavyer

marc:Plaver

jJoe:-Player

zoe:Player

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Specifying the Model Constraints

+start:Dagxe
+end:Date

1vePlayers(Q

L ocal attribute navigation
contextTaurnament inv:

Calendar WEEK

Directly related class navigation
context

{ordered
*| tournaments

Tournament

+start:Date
+end:Date

+acceptPlayer(p:Playégr)

*1 tournaments

*| players

Player

_Iname -String

+email :String

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Specifying the Model Constraints

L ocal attribute navigation
context Tournament inv:

+start:Date
+end:Date

end - start <= Calendar. WEEK 7
{ordered
Directly related class navigation x M&
Tourn

context Tournament::acceptPlayer(p) pre:

. +start:Date
|eague.players->irjcludes(p) +end:Date

Indirectly related class navigation

players
PIM

x|

+name:String
+email :String

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

OCL supports Quantification

+ OCL forall quantifier

/* All Matches in a Tournament occur within the Tournament’ s time frame */

context Tournament inv:
matches->forAll(m:Match |
m.start.after(t.start) and m.end.before(t.end))

¢ OCL exists quantifier

[* Each Tournament conducts at |east one Match on the first day of the
Tournament */

context Tournament inv:
matches->exists(m:Match | m.start.equal s(start))

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Summary

+ There arethree different rolesfor developers during object
design
¢ Classuser, classimplementor and class extender
+ During object design - and only during object design - we
specify visibility rules
+ Constraints are boolean expressions on model elements

+ Contracts are constraints on a class enable class users,
Implementors and extenders to share the same assumption
about the class (“Design by contract”)

+ OCL isalanguage that allows usto express constraints on
UML models

+ Complicated constratins involving morethan oneclass,
attribute or operation can be expressed with 3 basic navigation

types.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

